These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 19124276)

  • 21. Genetic basis of flocculation phenotype conversion in Saccharomyces cerevisiae.
    Liu N; Wang D; Wang ZY; He XP; Zhang B
    FEMS Yeast Res; 2007 Dec; 7(8):1362-70. PubMed ID: 17662052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel system of genetic transformation allows multiple integrations of a desired gene in Saccharomyces cerevisiae chromosomes.
    Guerra OG; Rubio IG; da Silva Filho CG; Bertoni RA; Dos Santos Govea RC; Vicente EJ
    J Microbiol Methods; 2006 Dec; 67(3):437-45. PubMed ID: 16831478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AT-rich sequences from the arbuscular mycorrhizal fungus Gigaspora rosea exhibit ARS function in the yeast Saccharomyces cerevisiae.
    Bergero R
    Fungal Genet Biol; 2006 May; 43(5):337-42. PubMed ID: 16504551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expansion and contraction of the DUP240 multigene family in Saccharomyces cerevisiae populations.
    Leh-Louis V; Wirth B; Potier S; Souciet JL; Despons L
    Genetics; 2004 Aug; 167(4):1611-9. PubMed ID: 15342502
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks.
    Narayanan V; Mieczkowski PA; Kim HM; Petes TD; Lobachev KS
    Cell; 2006 Jun; 125(7):1283-96. PubMed ID: 16814715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spontaneous duplications in diploid Saccharomyces cerevisiae cells.
    Schacherer J; Tourrette Y; Potier S; Souciet JL; de Montigny J
    DNA Repair (Amst); 2007 Oct; 6(10):1441-52. PubMed ID: 17544927
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rec A-independent homologous recombination induced by a putative fold-back tetraplex DNA.
    Shukla AK; Roy KB
    Biol Chem; 2006 Mar; 387(3):251-6. PubMed ID: 16542145
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of large DNA palindrome formation in yeast: implications for gene amplification and genome stability in eukaryotes.
    Butler DK; Yasuda LE; Yao MC
    Cell; 1996 Dec; 87(6):1115-22. PubMed ID: 8978615
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae.
    Rattray AJ; Shafer BK; Neelam B; Strathern JN
    Genes Dev; 2005 Jun; 19(11):1390-9. PubMed ID: 15937224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Instability of a plasmid-borne inverted repeat in Saccharomyces cerevisiae.
    Henderson ST; Petes TD
    Genetics; 1993 May; 134(1):57-62. PubMed ID: 8514149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale production of palindrome DNA fragments.
    Palmer EL; Gewiess A; Harp JM; York MH; Bunick GJ
    Anal Biochem; 1995 Oct; 231(1):109-14. PubMed ID: 8678288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genetic and Molecular Approaches to Study Chromosomal Breakage at Secondary Structure-Forming Repeats.
    Ait Saada A; Costa AB; Lobachev KS
    Methods Mol Biol; 2021; 2153():71-86. PubMed ID: 32840773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative genome analysis suggests characteristics of yeast inverted repeats that are important for transcriptional activity.
    Humphrey-Dixon EL; Sharp R; Schuckers M; Lock R
    Genome; 2011 Nov; 54(11):934-42. PubMed ID: 22029652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Palindromes and genomic stress fractures: bracing and repairing the damage.
    Lewis SM; Coté AG
    DNA Repair (Amst); 2006 Sep; 5(9-10):1146-60. PubMed ID: 16807136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of replication initiation on gene amplification in the rDNA and its relationship to aging.
    Ganley AR; Ide S; Saka K; Kobayashi T
    Mol Cell; 2009 Sep; 35(5):683-93. PubMed ID: 19748361
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long inverted repeats in eukaryotic genomes: recombinogenic motifs determine genomic plasticity.
    Wang Y; Leung FC
    FEBS Lett; 2006 Feb; 580(5):1277-84. PubMed ID: 16466723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mutagenic Inverted Repeats Assisted Genome Engineering (MIRAGE) in Saccharomyces cerevisiae: deletion of gal7.
    Nair NU; Zhao H
    Methods Mol Biol; 2012; 834():63-73. PubMed ID: 22144353
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of palindrome size and sequence on genetic stability in the bacteriophage phi X174 genome.
    Williams WL; Müller UR
    J Mol Biol; 1987 Aug; 196(4):743-55. PubMed ID: 2824789
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distance-independence of mitotic intrachromosomal recombination in Saccharomyces cerevisiae.
    Yuan LW; Keil RL
    Genetics; 1990 Feb; 124(2):263-73. PubMed ID: 2407612
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A cruciform in the direct repeats of the yeast 2 micron DNA: Selective S1 nuclease cleavage at one of the three homologous palindromes.
    Asakura Y; Kikuchi Y; Yanagida M
    J Biochem; 1985 Jul; 98(1):41-7. PubMed ID: 2995328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.