BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19125372)

  • 1. Differential numbers of foci of lymphocytes within the brains of Lewis rats exposed to weak complex nocturnal magnetic fields during development of experimental allergic encephalomyelitis.
    Persinger MA
    Int J Neurosci; 2009; 119(2):166-84. PubMed ID: 19125372
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of experimental allergic encephalomyelitis in rats by 50-nT, 7-Hz amplitude-modulated nocturnal magnetic fields depends on when after inoculation the fields are applied.
    Kinoshameg SA; Persinger MA
    Neurosci Lett; 2004 Nov; 370(2-3):166-70. PubMed ID: 15488316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of experimental allergic encephalomyelitis in rats exposed nocturnally to magnetic fields.
    Persinger MA; Cook LL; Koren SA
    Int J Neurosci; 2000; 100(1-4):107-16. PubMed ID: 10512552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of experimental allergic encephalomyelitis is specific to the frequency and intensity of nocturnally applied, intermittent magnetic fields in rats.
    Cook LL; Persinger MA
    Neurosci Lett; 2000 Oct; 292(3):171-4. PubMed ID: 11018304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential effects of low frequency, low intensity (<6 mG) nocturnal magnetic fields upon infiltration of mononuclear cells and numbers of mast cells in Lewis rat brains.
    Cook LL; Persinger MA; Koren SA
    Toxicol Lett; 2000 Dec; 118(1-2):9-19. PubMed ID: 11137304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of Experimental Allergic Encephalomyelitis in Rats Exposed Nocturnally to Magnetic Fields.
    Persinger MA; Cook LL; Koren SA
    Int J Neurosci; 1999 Jan; 100(1-4):107-116. PubMed ID: 10938555
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Altered blood chemistry and hippocampal histomorphology in adult rats following prenatal exposure to physiologically-patterned, weak (50-500 nanoTesla range) magnetic fields.
    St-Pierre LS; Mazzuchin A; Persinger MA
    Int J Radiat Biol; 2008 Apr; 84(4):325-35. PubMed ID: 18386197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prenatal exposures to LTP-patterned magnetic fields: quantitative effects on specific limbic structures and acquisition of contextually conditioned fear.
    Whissell PD; Tsang EW; Mulligan BP; Persinger MA
    Int J Neurosci; 2009; 119(1):1-14. PubMed ID: 19116828
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of GSM-900 microwaves on the experimental allergic encephalomyelitis (EAE) rat model of multiple sclerosis.
    Anane R; Geffard M; Taxile M; Bodet D; Billaudel B; Dulou PE; Veyret B
    Bioelectromagnetics; 2003 Apr; 24(3):211-3. PubMed ID: 12669305
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced mortality of rat pups following inductions of epileptic seizures after perinatal exposures to 5 nT, 7 Hz magnetic fields.
    St-Pierre LS; Parker GH; Bubenik GA; Persinger MA
    Life Sci; 2007 Nov; 81(21-22):1496-500. PubMed ID: 17961603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral changes in adult rats after prenatal exposures to complex, weak magnetic fields.
    St-Pierre LS; Persinger MA
    Electromagn Biol Med; 2008; 27(4):355-64. PubMed ID: 19037784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weak, physiologically patterned magnetic fields do not affect maze performance in normal rats, but disrupt seized rats normalized with ketamine: possible support for a neuromatrix concept?
    McKay BE; Persinger MA
    Epilepsy Behav; 2006 Feb; 8(1):137-44. PubMed ID: 16388988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dihydroergocryptine protects from acute experimental allergic encephalomyelitis in the rat.
    Canonico PL; Sortino MA; Favit A; Aleppo G; Scapagnini U
    Funct Neurol; 1993; 8(3):183-8. PubMed ID: 8406136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal analgesic effects from weak, complex magnetic fields and pharmacological interactions.
    Martin LJ; Koren SA; Persinger MA
    Pharmacol Biochem Behav; 2004 Jun; 78(2):217-27. PubMed ID: 15219761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ambulatory effects of brief exposures to magnetic fields changing orthogonally in space over time.
    St-Pierre LS; Koren SA; Persinger MA
    Int J Neurosci; 2007 Mar; 117(3):417-20. PubMed ID: 17365125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermittent exposures to nanoTesla range, 7 Hz, amplitude-modulated magnetic fields increase regeneration rates in planarian.
    Gang N; Parker GH; Lafrenie RM; Persinger MA
    Int J Radiat Biol; 2013 May; 89(5):384-9. PubMed ID: 23206181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autoradiographic evaluation of electromagnetic field effects on serotonin (5HT1A) receptors in rat brain.
    Johnson MT; McCullough J; Nindl G; Chamberlain JK
    Biomed Sci Instrum; 2003; 39():466-70. PubMed ID: 12724937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diurnal patterns in brain biogenic amines of rats exposed to 60-Hz electric fields.
    Vasquez BJ; Anderson LE; Lowery CI; Adey WR
    Bioelectromagnetics; 1988; 9(3):229-36. PubMed ID: 3233102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Glycosaminoglycans in the brain of rats subjected to electromagnetic field action].
    Matych S
    Med Pr; 1981; 32(6):393-402. PubMed ID: 6804742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential multiple resonance mechanism by which weak magnetic fields affect molecules and medical problems: the example of melatonin and experimental "multiple sclerosis".
    Persinger MA
    Med Hypotheses; 2006; 66(4):811-5. PubMed ID: 16321472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.