These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 19125565)

  • 1. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors.
    Yu M; Li F; Chen Z; Hu H; Zhan C; Yang H; Huang C
    Anal Chem; 2009 Feb; 81(3):930-5. PubMed ID: 19125565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and in vivo targeted imaging of amine-functionalized rare-earth up-converting nanophosphors.
    Xiong LQ; Chen ZG; Yu MX; Li FY; Liu C; Huang CH
    Biomaterials; 2009 Oct; 30(29):5592-600. PubMed ID: 19564039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-photon microscopy of cells and tissue.
    Rubart M
    Circ Res; 2004 Dec; 95(12):1154-66. PubMed ID: 15591237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High contrast upconversion luminescence targeted imaging in vivo using peptide-labeled nanophosphors.
    Xiong L; Chen Z; Tian Q; Cao T; Xu C; Li F
    Anal Chem; 2009 Nov; 81(21):8687-94. PubMed ID: 19817386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system.
    Hanaoka K; Kikuchi K; Kobayashi S; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13502-9. PubMed ID: 17927176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties.
    Zhou J; Sun Y; Du X; Xiong L; Hu H; Li F
    Biomaterials; 2010 Apr; 31(12):3287-95. PubMed ID: 20132982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular labeling of luminescent gold nanorods enables 3-D microscopy of mouse intestinal capillaries.
    Tang SC; Fu YY; Lo WF; Hua TE; Tuan HY
    ACS Nano; 2010 Oct; 4(10):6278-84. PubMed ID: 20886812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution light microscopy using luminescent nanoparticles.
    Ohulchanskyy TY; Roy I; Yong KT; Pudavar HE; Prasad PN
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(2):162-75. PubMed ID: 20101713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An evaluation of two-photon excitation versus confocal and digital deconvolution fluorescence microscopy imaging in Xenopus morphogenesis.
    Periasamy A; Skoglund P; Noakes C; Keller R
    Microsc Res Tech; 1999 Nov; 47(3):172-81. PubMed ID: 10544332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rare earth doped ring-shaped luminescent micro-composites on patterned ferroelectrics.
    García-Santizo JV; Molina P; Ramírez MO; Lemanski K; Strek W; Dereń PJ; Bausá LE
    Opt Express; 2010 Aug; 18(17):18269-77. PubMed ID: 20721219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering.
    Guehring T; Urban JP; Cui Z; Tirlapur UK
    Microsc Res Tech; 2008 Apr; 71(4):298-304. PubMed ID: 18189326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous photobleaching in confocal microscopy caused by differences in refractive index and excitation mode.
    Van Oostveldt P; Verhaegen F; Messens K
    Cytometry; 1998 Jun; 32(2):137-46. PubMed ID: 9627227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adding new dimensions to laser-scanning fluorescence microscopy.
    De AK; Goswami D
    J Microsc; 2009 Feb; 233(2):320-5. PubMed ID: 19220698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy.
    Keller PJ; Stelzer EH
    Curr Opin Neurobiol; 2008 Dec; 18(6):624-32. PubMed ID: 19375303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. STED microscopy with continuous wave beams.
    Willig KI; Harke B; Medda R; Hell SW
    Nat Methods; 2007 Nov; 4(11):915-8. PubMed ID: 17952088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radioisotope post-labeling upconversion nanophosphors for in vivo quantitative tracking.
    Sun Y; Liu Q; Peng J; Feng W; Zhang Y; Yang P; Li F
    Biomaterials; 2013 Mar; 34(9):2289-95. PubMed ID: 23274071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorine-18 labeled rare-earth nanoparticles for positron emission tomography (PET) imaging of sentinel lymph node.
    Sun Y; Yu M; Liang S; Zhang Y; Li C; Mou T; Yang W; Zhang X; Li B; Huang C; Li F
    Biomaterials; 2011 Apr; 32(11):2999-3007. PubMed ID: 21295345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging membrane intercalating near infrared dyes to track multiple cell populations.
    Roy EJ; Sivaguru M; Fried G; Gray BD; Kranz DM
    J Immunol Methods; 2009 Aug; 348(1-2):18-29. PubMed ID: 19559026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined non-linear laser imaging (two-photon excitation fluorescence microscopy, fluorescence lifetime imaging microscopy, multispectral multiphoton microscopy) in cutaneous tumours: first experiences.
    De Giorgi V; Massi D; Sestini S; Cicchi R; Pavone FS; Lotti T
    J Eur Acad Dermatol Venereol; 2009 Mar; 23(3):314-6. PubMed ID: 19207664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of microscopic techniques (epifluorescence microscopy, CLSM, TPE-LSM) as a basis for the quantitative image analysis of activated sludge.
    Lopez C; Pons MN; Morgenroth E
    Water Res; 2005; 39(2-3):456-68. PubMed ID: 15644254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.