These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19126200)

  • 1. Comparison of public peak detection algorithms for MALDI mass spectrometry data analysis.
    Yang C; He Z; Yu W
    BMC Bioinformatics; 2009 Jan; 10():4. PubMed ID: 19126200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature selection and nearest centroid classification for protein mass spectrometry.
    Levner I
    BMC Bioinformatics; 2005 Mar; 6():68. PubMed ID: 15788095
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of feature selection and classification for MALDI-MS data.
    Liu Q; Sung AH; Qiao M; Chen Z; Yang JY; Yang MQ; Huang X; Deng Y
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S3. PubMed ID: 19594880
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved peak detection in mass spectrum by incorporating continuous wavelet transform-based pattern matching.
    Du P; Kibbe WA; Lin SM
    Bioinformatics; 2006 Sep; 22(17):2059-65. PubMed ID: 16820428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GaborLocal: peak detection in mass spectrum by Gabor filters and Gaussian local maxima.
    Nguyen N; Huang H; Oraintara S; Vo A
    Comput Syst Bioinformatics Conf; 2008; 7():85-96. PubMed ID: 19642271
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new peak detection algorithm for MALDI mass spectrometry data based on a modified Asymmetric Pseudo-Voigt model.
    Wijetunge CD; Saeed I; Boughton BA; Roessner U; Halgamuge SK
    BMC Genomics; 2015; 16 Suppl 12(Suppl 12):S12. PubMed ID: 26680279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comprehensive analysis about the influence of low-level preprocessing techniques on mass spectrometry data for sample classification.
    López-Fernández H; Reboiro-Jato M; Glez-Peña D; Fernández-Riverola F
    Int J Data Min Bioinform; 2014; 10(4):455-73. PubMed ID: 25946889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models.
    Morris JS; Brown PJ; Herrick RC; Baggerly KA; Coombes KR
    Biometrics; 2008 Jun; 64(2):479-89. PubMed ID: 17888041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal Partitioning Algorithm for Highly Efficient Gaussian Mixture Modeling in Mass Spectrometry.
    Polanski A; Marczyk M; Pietrowska M; Widlak P; Polanska J
    PLoS One; 2015; 10(7):e0134256. PubMed ID: 26230717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reversible jump MCMC approach for peak identification for stroke SELDI mass spectrometry using mixture model.
    Wang Y; Zhou X; Wang H; Li K; Yao L; Wong ST
    Bioinformatics; 2008 Jul; 24(13):i407-13. PubMed ID: 18586741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wavelet-based data pre-processing analysis approach in mass spectrometry.
    Li X; Li J; Yao X
    Comput Biol Med; 2007 Apr; 37(4):509-16. PubMed ID: 16982045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peak intensity prediction in MALDI-TOF mass spectrometry: a machine learning study to support quantitative proteomics.
    Timm W; Scherbart A; Böcker S; Kohlbacher O; Nattkemper TW
    BMC Bioinformatics; 2008 Oct; 9():443. PubMed ID: 18937839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A computational platform for MALDI-TOF mass spectrometry data: application to serum and plasma samples.
    Mantini D; Petrucci F; Pieragostino D; Del Boccio P; Sacchetta P; Candiano G; Ghiggeri GM; Lugaresi A; Federici G; Di Ilio C; Urbani A
    J Proteomics; 2010 Jan; 73(3):562-70. PubMed ID: 19914411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multispectra CWT-based algorithm (MCWT) in mass spectra for peak extraction.
    Hsueh HM; Kuo HC; Tsai CA
    J Biopharm Stat; 2008; 18(5):869-82. PubMed ID: 18781522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated imaging MS: Toward high throughput imaging mass spectrometry.
    McDonnell LA; van Remoortere A; van Zeijl RJ; Dalebout H; Bladergroen MR; Deelder AM
    J Proteomics; 2010 Apr; 73(6):1279-82. PubMed ID: 19896567
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved classification of mass spectrometry database search results using newer machine learning approaches.
    Ulintz PJ; Zhu J; Qin ZS; Andrews PC
    Mol Cell Proteomics; 2006 Mar; 5(3):497-509. PubMed ID: 16321970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification algorithms for phenotype prediction in genomics and proteomics.
    Ressom HW; Varghese RS; Zhang Z; Xuan J; Clarke R
    Front Biosci; 2008 Jan; 13():691-708. PubMed ID: 17981580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mass spectrometry data processing using zero-crossing lines in multi-scale of Gaussian derivative wavelet.
    Nguyen N; Huang H; Oraintara S; Vo A
    Bioinformatics; 2010 Sep; 26(18):i659-65. PubMed ID: 20823336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MALDI-MS data analysis for disease biomarker discovery.
    Yu W; Wu B; Liu J; Li X; Stone K; Williams KR; Zhao H
    Methods Mol Biol; 2006; 328():199-216. PubMed ID: 16785651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward digital staining using imaging mass spectrometry and random forests.
    Hanselmann M; Köthe U; Kirchner M; Renard BY; Amstalden ER; Glunde K; Heeren RM; Hamprecht FA
    J Proteome Res; 2009 Jul; 8(7):3558-67. PubMed ID: 19469555
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.