BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19126203)

  • 1. Dynamic simulations on the mitochondrial fatty acid beta-oxidation network.
    Modre-Osprian R; Osprian I; Tilg B; Schreier G; Weinberger KM; Graber A
    BMC Syst Biol; 2009 Jan; 3():2. PubMed ID: 19126203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New genetic defects in mitochondrial fatty acid oxidation and carnitine deficiency.
    Stanley CA
    Adv Pediatr; 1987; 34():59-88. PubMed ID: 3318304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial β-oxidation of saturated fatty acids in humans.
    Adeva-Andany MM; Carneiro-Freire N; Seco-Filgueira M; Fernández-Fernández C; Mouriño-Bayolo D
    Mitochondrion; 2019 May; 46():73-90. PubMed ID: 29551309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diagnosis of mitochondrial fatty acid oxidation defects.
    Duran M; Bruinvis L; Ketting D; Dorland L
    Padiatr Padol; 1993; 28(1):19-25. PubMed ID: 8446424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mouse models for disorders of mitochondrial fatty acid beta-oxidation.
    Schuler AM; Wood PA
    ILAR J; 2002; 43(2):57-65. PubMed ID: 11917157
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutation analysis in mitochondrial fatty acid oxidation defects: Exemplified by acyl-CoA dehydrogenase deficiencies, with special focus on genotype-phenotype relationship.
    Gregersen N; Andresen BS; Corydon MJ; Corydon TJ; Olsen RK; Bolund L; Bross P
    Hum Mutat; 2001 Sep; 18(3):169-89. PubMed ID: 11524729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemical competition makes fatty-acid β-oxidation vulnerable to substrate overload.
    van Eunen K; Simons SM; Gerding A; Bleeker A; den Besten G; Touw CM; Houten SM; Groen BK; Krab K; Reijngoud DJ; Bakker BM
    PLoS Comput Biol; 2013; 9(8):e1003186. PubMed ID: 23966849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial fatty acid oxidation disorders: pathophysiological studies in mouse models.
    Spiekerkoetter U; Wood PA
    J Inherit Metab Dis; 2010 Oct; 33(5):539-46. PubMed ID: 20532823
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Living on the edge: substrate competition explains loss of robustness in mitochondrial fatty-acid oxidation disorders.
    van Eunen K; Volker-Touw CM; Gerding A; Bleeker A; Wolters JC; van Rijt WJ; Martines AM; Niezen-Koning KE; Heiner RM; Permentier H; Groen AK; Reijngoud DJ; Derks TG; Bakker BM
    BMC Biol; 2016 Dec; 14(1):107. PubMed ID: 27927213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fatty acid oxidation enzyme long-chain acyl-CoA dehydrogenase can be a source of mitochondrial hydrogen peroxide.
    Zhang Y; Bharathi SS; Beck ME; Goetzman ES
    Redox Biol; 2019 Sep; 26():101253. PubMed ID: 31234015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animal studies.
    Wajner M; Amaral AU
    Biosci Rep; 2015 Nov; 36(1):e00281. PubMed ID: 26589966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2,6-Dimethylheptanoyl-CoA is a specific substrate for long-chain acyl-CoA dehydrogenase (LCAD): evidence for a major role of LCAD in branched-chain fatty acid oxidation.
    Wanders RJ; Denis S; Ruiter JP; IJlst L; Dacremont G
    Biochim Biophys Acta; 1998 Jul; 1393(1):35-40. PubMed ID: 9714723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Is autism a disorder of fatty acid metabolism? Possible dysfunction of mitochondrial beta-oxidation by long chain acyl-CoA dehydrogenase.
    Clark-Taylor T; Clark-Taylor BE
    Med Hypotheses; 2004; 62(6):970-5. PubMed ID: 15142659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of dietary fatty acid chain-length on metabolic tolerance in mouse models of inherited defects in mitochondrial fatty acid beta-oxidation.
    Schuler AM; Gower BA; Matern D; Rinaldo P; Wood PA
    Mol Genet Metab; 2004 Dec; 83(4):322-9. PubMed ID: 15589119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Participation of peroxisomes in the metabolism of xenobiotic acyl compounds: comparison between peroxisomal and mitochondrial beta-oxidation of omega-phenyl fatty acids in rat liver.
    Yamada J; Ogawa S; Horie S; Watanabe T; Suga T
    Biochim Biophys Acta; 1987 Sep; 921(2):292-301. PubMed ID: 3651489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that Oxidative Disbalance and Mitochondrial Dysfunction are Involved in the Pathophysiology of Fatty Acid Oxidation Disorders.
    Ribas GS; Vargas CR
    Cell Mol Neurobiol; 2022 Apr; 42(3):521-532. PubMed ID: 32876899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of mitochondrial fatty acid β-oxidation in human: what can we learn from inborn fatty acid β-oxidation deficiencies?
    Bastin J
    Biochimie; 2014 Jan; 96():113-20. PubMed ID: 23764392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fetal fatty acid oxidation disorders, their effect on maternal health and neonatal outcome: impact of expanded newborn screening on their diagnosis and management.
    Shekhawat PS; Matern D; Strauss AW
    Pediatr Res; 2005 May; 57(5 Pt 2):78R-86R. PubMed ID: 15817498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of mitochondrial acyl-CoA dehydrogenases in the metabolism of dicarboxylic fatty acids.
    Bharathi SS; Zhang Y; Gong Z; Muzumdar R; Goetzman ES
    Biochem Biophys Res Commun; 2020 Jun; 527(1):162-166. PubMed ID: 32446361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leaky beta-oxidation of a trans-fatty acid: incomplete beta-oxidation of elaidic acid is due to the accumulation of 5-trans-tetradecenoyl-CoA and its hydrolysis and conversion to 5-trans-tetradecenoylcarnitine in the matrix of rat mitochondria.
    Yu W; Liang X; Ensenauer RE; Vockley J; Sweetman L; Schulz H
    J Biol Chem; 2004 Dec; 279(50):52160-7. PubMed ID: 15466478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.