These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 19126405)
1. The actin cytoskeleton differentially regulates NG115-401L cell ryanodine receptor and inositol 1,4,5-trisphosphate receptor induced calcium signaling pathways. Bose DD; Thomas DW Biochem Biophys Res Commun; 2009 Feb; 379(2):594-9. PubMed ID: 19126405 [TBL] [Abstract][Full Text] [Related]
2. Activation of ryanodine receptors induces calcium influx in a neuroblastoma cell line lacking calcium influx factor activity. Bose DD; Rahimian R; Thomas DW Biochem J; 2005 Mar; 386(Pt 2):291-6. PubMed ID: 15482258 [TBL] [Abstract][Full Text] [Related]
3. Stabilization of cortical actin induces internalization of transient receptor potential 3 (Trp3)-associated caveolar Ca2+ signaling complex and loss of Ca2+ influx without disruption of Trp3-inositol trisphosphate receptor association. Lockwich T; Singh BB; Liu X; Ambudkar IS J Biol Chem; 2001 Nov; 276(45):42401-8. PubMed ID: 11524429 [TBL] [Abstract][Full Text] [Related]
4. Activation of store-mediated calcium entry by secretion-like coupling between the inositol 1,4,5-trisphosphate receptor type II and human transient receptor potential (hTrp1) channels in human platelets. Rosado JA; Sage SO Biochem J; 2001 May; 356(Pt 1):191-8. PubMed ID: 11336651 [TBL] [Abstract][Full Text] [Related]
5. Type 1 inositol (1,4,5)-trisphosphate receptor activates ryanodine receptor 1 to mediate calcium spark signaling in adult mammalian skeletal muscle. Tjondrokoesoemo A; Li N; Lin PH; Pan Z; Ferrante CJ; Shirokova N; Brotto M; Weisleder N; Ma J J Biol Chem; 2013 Jan; 288(4):2103-9. PubMed ID: 23223241 [TBL] [Abstract][Full Text] [Related]
6. Store-operated Ca2+ influx causes Ca2+ release from the intracellular Ca2+ channels that is required for T cell activation. Dadsetan S; Zakharova L; Molinski TF; Fomina AF J Biol Chem; 2008 May; 283(18):12512-9. PubMed ID: 18316371 [TBL] [Abstract][Full Text] [Related]
7. Hydroxylated xestospongins block inositol-1,4,5-trisphosphate-induced Ca2+ release and sensitize Ca2+-induced Ca2+ release mediated by ryanodine receptors. Ta TA; Feng W; Molinski TF; Pessah IN Mol Pharmacol; 2006 Feb; 69(2):532-8. PubMed ID: 16249374 [TBL] [Abstract][Full Text] [Related]
8. Perturbation of Ca Wu KC; Wong KL; Shiao LR; Chen CY; Chan P; Leung YM Eur J Pharmacol; 2021 Aug; 904():174115. PubMed ID: 33901459 [TBL] [Abstract][Full Text] [Related]
9. Regulation of Ca2+-release-activated Ca2+ current (Icrac) by ryanodine receptors in inositol 1,4,5-trisphosphate-receptor-deficient DT40 cells. Kiselyov K; Shin DM; Shcheynikov N; Kurosaki T; Muallem S Biochem J; 2001 Nov; 360(Pt 1):17-22. PubMed ID: 11695987 [TBL] [Abstract][Full Text] [Related]
10. Two distinct signaling pathways for regulation of spontaneous local Ca2+ release by phospholipase C in airway smooth muscle cells. Liu QH; Zheng YM; Wang YX Pflugers Arch; 2007 Jan; 453(4):531-41. PubMed ID: 17093969 [TBL] [Abstract][Full Text] [Related]
11. Involvement of endoplasmic reticulum Ca2+ release through ryanodine and inositol 1,4,5-triphosphate receptors in the neurotoxic effects induced by the amyloid-beta peptide. Ferreiro E; Oliveira CR; Pereira C J Neurosci Res; 2004 Jun; 76(6):872-80. PubMed ID: 15160398 [TBL] [Abstract][Full Text] [Related]
12. Endoplasmic reticulum stress alters ryanodine receptor function in the murine pancreatic β cell. Yamamoto WR; Bone RN; Sohn P; Syed F; Reissaus CA; Mosley AL; Wijeratne AB; True JD; Tong X; Kono T; Evans-Molina C J Biol Chem; 2019 Jan; 294(1):168-181. PubMed ID: 30420428 [TBL] [Abstract][Full Text] [Related]
13. A role for the actin cytoskeleton in the initiation and maintenance of store-mediated calcium entry in human platelets. Evidence for conformational coupling. Rosado JA; Jenner S; Sage SO J Biol Chem; 2000 Mar; 275(11):7527-33. PubMed ID: 10713057 [TBL] [Abstract][Full Text] [Related]
15. [Expression and role of inositol 1,4,5-trisphosphate receptor and ryanodine receptor in a human lens epithelial cell line]. Qu B; Zhang JS Zhonghua Yan Ke Za Zhi; 2003 Jul; 39(7):389-94. PubMed ID: 12921667 [TBL] [Abstract][Full Text] [Related]
16. Atrial local Ca2+ signaling and inositol 1,4,5-trisphosphate receptors. Kim JC; Son MJ; Subedi KP; Li Y; Ahn JR; Woo SH Prog Biophys Mol Biol; 2010 Sep; 103(1):59-70. PubMed ID: 20193706 [TBL] [Abstract][Full Text] [Related]
17. KRAS-induced actin-interacting protein regulates inositol 1,4,5-trisphosphate-receptor-mediated calcium release. Fujimoto T; Machida T; Tsunoda T; Doi K; Ota T; Kuroki M; Shirasawa S Biochem Biophys Res Commun; 2011 May; 408(2):214-7. PubMed ID: 21457704 [TBL] [Abstract][Full Text] [Related]
18. Capacitative Ca(2+) entry in vascular endothelial cells is mediated via pathways sensitive to 2 aminoethoxydiphenyl borate and xestospongin C. Bishara NB; Murphy TV; Hill MA Br J Pharmacol; 2002 Jan; 135(1):119-28. PubMed ID: 11786487 [TBL] [Abstract][Full Text] [Related]
19. Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer's mouse models. Stutzmann GE; Smith I; Caccamo A; Oddo S; Parker I; Laferla F Ann N Y Acad Sci; 2007 Feb; 1097():265-77. PubMed ID: 17413028 [TBL] [Abstract][Full Text] [Related]
20. Sparks and puffs in oligodendrocyte progenitors: cross talk between ryanodine receptors and inositol trisphosphate receptors. Haak LL; Song LS; Molinski TF; Pessah IN; Cheng H; Russell JT J Neurosci; 2001 Jun; 21(11):3860-70. PubMed ID: 11356874 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]