BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 19126475)

  • 1. An extended Markov blanket approach to proteomic biomarker detection from high-resolution mass spectrometry data.
    Oh JH; Gurnani P; Schorge J; Rosenblatt KP; Gao JX
    IEEE Trans Inf Technol Biomed; 2009 Mar; 13(2):195-206. PubMed ID: 19126475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proteomic data analysis workflow for discovery of candidate biomarker peaks predictive of clinical outcome for patients with acute myeloid leukemia.
    Forshed J; Pernemalm M; Tan CS; Lindberg M; Kanter L; Pawitan Y; Lewensohn R; Stenke L; Lehtiƶ J
    J Proteome Res; 2008 Jun; 7(6):2332-41. PubMed ID: 18452325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diagnosis of early relapse in ovarian cancer using serum proteomic profiling.
    Oh JH; Gao J; Nandi A; Gurnani P; Knowles L; Schorge J
    Genome Inform; 2005; 16(2):195-204. PubMed ID: 16901102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A data-analytic strategy for protein biomarker discovery: profiling of high-dimensional proteomic data for cancer detection.
    Yasui Y; Pepe M; Thompson ML; Adam BL; Wright GL; Qu Y; Potter JD; Winget M; Thornquist M; Feng Z
    Biostatistics; 2003 Jul; 4(3):449-63. PubMed ID: 12925511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prostate cancer biomarker discovery using high performance mass spectral serum profiling.
    Oh JH; Lotan Y; Gurnani P; Rosenblatt KP; Gao J
    Comput Methods Programs Biomed; 2009 Oct; 96(1):33-41. PubMed ID: 19423179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of lung cancer patients by serum protein profiling using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry.
    Han KQ; Huang G; Gao CF; Wang XL; Ma B; Sun LQ; Wei ZJ
    Am J Clin Oncol; 2008 Apr; 31(2):133-9. PubMed ID: 18391596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Guilt-by-association feature selection: identifying biomarkers from proteomic profiles.
    Shin H; Sheu B; Joseph M; Markey MK
    J Biomed Inform; 2008 Feb; 41(1):124-36. PubMed ID: 17544868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature extraction and dimensionality reduction for mass spectrometry data.
    Liu Y
    Comput Biol Med; 2009 Sep; 39(9):818-23. PubMed ID: 19646687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous and exact interval estimates for the contrast of two groups based on an extremely high dimensional variable: application to mass spec data.
    Park Y; Downing SR; Kim D; Hahn WC; Li C; Kantoff PW; Wei LJ
    Bioinformatics; 2007 Jun; 23(12):1451-8. PubMed ID: 17459967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of biomarkers for risk stratification of cardiovascular events using genetic algorithm with recursive local floating search.
    Zhou X; Wang H; Wang J; Wang Y; Hoehn G; Azok J; Brennan ML; Hazen SL; Li K; Chang SF; Wong ST
    Proteomics; 2009 Apr; 9(8):2286-94. PubMed ID: 19337989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A wavelet-based data pre-processing analysis approach in mass spectrometry.
    Li X; Li J; Yao X
    Comput Biol Med; 2007 Apr; 37(4):509-16. PubMed ID: 16982045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Support vector machine approach to separate control and breast cancer serum samples.
    Pham TV; van de Wiel MA; Jimenez CR
    Stat Appl Genet Mol Biol; 2008; 7(2):Article11. PubMed ID: 18312216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Clinical proteomics in breast cancer: a review.
    Gast MC; Schellens JH; Beijnen JH
    Breast Cancer Res Treat; 2009 Jul; 116(1):17-29. PubMed ID: 19082706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomarker selection and sample prediction for multi-category disease on MALDI-TOF data.
    Oh JH; Kim YB; Gurnani P; Rosenblatt KP; Gao JX
    Bioinformatics; 2008 Aug; 24(16):1812-8. PubMed ID: 18562269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytical considerations for mass spectrometry profiling in serum biomarker discovery.
    Whiteley GR; Colantonio S; Sacconi A; Saul RG
    Clin Lab Med; 2009 Mar; 29(1):57-69. PubMed ID: 19389551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of the random forest classification method to peaks detected from mass spectrometric proteomic profiles of cancer patients and controls.
    Barrett JH; Cairns DA
    Stat Appl Genet Mol Biol; 2008; 7(2):Article4. PubMed ID: 18312218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discrimination analysis of mass spectrometry proteomics for ovarian cancer detection.
    Hong YJ; Wang XD; Shen D; Zeng S
    Acta Pharmacol Sin; 2008 Oct; 29(10):1240-6. PubMed ID: 18817630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics and proteomics in the clinical neurosciences: data mining and bioinformatics.
    Phan JH; Quo CF; Wang MD
    Prog Brain Res; 2006; 158():83-108. PubMed ID: 17027692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Peak selection from MALDI-TOF mass spectra using ant colony optimization.
    Ressom HW; Varghese RS; Drake SK; Hortin GL; Abdel-Hamid M; Loffredo CA; Goldman R
    Bioinformatics; 2007 Mar; 23(5):619-26. PubMed ID: 17237065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuroblastoma detection using serum proteomic profiling: a novel mining technique for cancer?
    Sandoval JA; Dobrolecki LE; Huang J; Grosfeld JL; Hickey RJ; Malkas LH
    J Pediatr Surg; 2006 Apr; 41(4):639-46; discussion 639-46. PubMed ID: 16567169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.