BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 19126545)

  • 21. Difference in molecular structure of rod and cone visual pigments studied by Fourier transform infrared spectroscopy.
    Imai H; Hirano T; Kandori H; Terakita A; Shichida Y
    Biochemistry; 2001 Mar; 40(9):2879-86. PubMed ID: 11258899
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conserved proline residue at position 189 in cone visual pigments as a determinant of molecular properties different from rhodopsins.
    Kuwayama S; Imai H; Hirano T; Terakita A; Shichida Y
    Biochemistry; 2002 Dec; 41(51):15245-52. PubMed ID: 12484762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ.
    Imai H; Kuwayama S; Onishi A; Morizumi T; Chisaka O; Shichida Y
    Photochem Photobiol Sci; 2005 Sep; 4(9):667-74. PubMed ID: 16121275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments.
    Okano T; Kojima D; Fukada Y; Shichida Y; Yoshizawa T
    Proc Natl Acad Sci U S A; 1992 Jul; 89(13):5932-6. PubMed ID: 1385866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resonance Raman examination of the wavelength regulation mechanism in human visual pigments.
    Kochendoerfer GG; Wang Z; Oprian DD; Mathies RA
    Biochemistry; 1997 Jun; 36(22):6577-87. PubMed ID: 9184137
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of spectral tuning in the mouse green cone pigment.
    Sun H; Macke JP; Nathans J
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8860-5. PubMed ID: 9238068
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Color vision of the coelacanth (Latimeria chalumnae) and adaptive evolution of rhodopsin (RH1) and rhodopsin-like (RH2) pigments.
    Yokoyama S
    J Hered; 2000; 91(3):215-20. PubMed ID: 10833047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. How vertebrate and invertebrate visual pigments differ in their mechanism of photoactivation.
    Nakagawa M; Iwasa T; Kikkawa S; Tsuda M; Ebrey TG
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6189-92. PubMed ID: 10339563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments.
    Cowing JA; Poopalasundaram S; Wilkie SE; Robinson PR; Bowmaker JK; Hunt DM
    Biochem J; 2002 Oct; 367(Pt 1):129-35. PubMed ID: 12099889
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular basis for tetrachromatic color vision.
    Okano T; Fukada Y; Yoshizawa T
    Comp Biochem Physiol B Biochem Mol Biol; 1995 Nov; 112(3):405-14. PubMed ID: 8529019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal.
    Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
    Biochemistry; 2002 May; 41(19):6019-25. PubMed ID: 11993996
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular evolution of human visual pigment genes.
    Yokoyama S; Yokoyama R
    Mol Biol Evol; 1989 Mar; 6(2):186-97. PubMed ID: 2497293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly conserved glutamic acid in the extracellular IV-V loop in rhodopsins acts as the counterion in retinochrome, a member of the rhodopsin family.
    Terakita A; Yamashita T; Shichida Y
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14263-7. PubMed ID: 11106382
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Murine and bovine blue cone pigment genes: cloning and characterization of two new members of the S family of visual pigments.
    Chiu MI; Zack DJ; Wang Y; Nathans J
    Genomics; 1994 May; 21(2):440-3. PubMed ID: 8088841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The thermal contribution to photoactivation in A2 visual pigments studied by temperature effects on spectral properties.
    Ala-Laurila P; Albert RJ; Saarinen P; Koskelainen A; Donner K
    Vis Neurosci; 2003; 20(4):411-9. PubMed ID: 14658769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulatory mechanism for the stability of the meta II intermediate of pinopsin.
    Nakamura A; Kojima D; Okano T; Imai H; Terakita A; Shichida Y; Fukada Y
    J Biochem; 2001 Feb; 129(2):329-34. PubMed ID: 11173536
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The spectral tuning in the short wavelength-sensitive type 2 pigments.
    Yokoyama S; Tada T
    Gene; 2003 Mar; 306():91-8. PubMed ID: 12657470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterologous expression of bovine rhodopsin in Drosophila photoreceptor cells.
    Ahmad ST; Natochin M; Barren B; Artemyev NO; O'Tousa JE
    Invest Ophthalmol Vis Sci; 2006 Sep; 47(9):3722-8. PubMed ID: 16936079
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.