BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19126761)

  • 1. Cumulative energy imbalance in the pediatric intensive care unit: role of targeted indirect calorimetry.
    Mehta NM; Bechard LJ; Leavitt K; Duggan C
    JPEN J Parenter Enteral Nutr; 2009; 33(3):336-44. PubMed ID: 19126761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energy imbalance and the risk of overfeeding in critically ill children.
    Mehta NM; Bechard LJ; Dolan M; Ariagno K; Jiang H; Duggan C
    Pediatr Crit Care Med; 2011 Jul; 12(4):398-405. PubMed ID: 20975614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Indirect calorimetry reveals that better monitoring of nutrition therapy in pediatric intensive care is needed.
    Dokken M; Rustøen T; Stubhaug A
    JPEN J Parenter Enteral Nutr; 2015 Mar; 39(3):344-52. PubMed ID: 24255088
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy expenditure in critically ill children.
    Framson CM; LeLeiko NS; Dallal GE; Roubenoff R; Snelling LK; Dwyer JT
    Pediatr Crit Care Med; 2007 May; 8(3):264-7. PubMed ID: 17417117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values.
    Coss-Bu JA; Jefferson LS; Walding D; David Y; Smith EO; Klish WJ
    Am J Clin Nutr; 1998 Jan; 67(1):74-80. PubMed ID: 9440378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child.
    Sion-Sarid R; Cohen J; Houri Z; Singer P
    Nutrition; 2013 Sep; 29(9):1094-9. PubMed ID: 23927944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of measured versus predicted energy requirements in critically ill cancer patients.
    Pirat A; Tucker AM; Taylor KA; Jinnah R; Finch CG; Canada TD; Nates JL
    Respir Care; 2009 Apr; 54(4):487-94. PubMed ID: 19327184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing Underfeeding and Overfeeding: A Clinician's Guide to the Acquisition and Implementation of Indirect Calorimetry.
    Ladd AK; Skillman HE; Haemer MA; Mourani PM
    Nutr Clin Pract; 2018 Apr; 33(2):198-205. PubMed ID: 28549221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resting energy expenditure by indirect calorimetry versus the ventilator-VCO
    Koekkoek WAC; Xiaochen G; van Dijk D; van Zanten ARH
    Clin Nutr ESPEN; 2020 Oct; 39():137-143. PubMed ID: 32859307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy expenditure in critically ill children.
    Briassoulis G; Venkataraman S; Thompson AE
    Crit Care Med; 2000 Apr; 28(4):1166-72. PubMed ID: 10809300
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy expenditure and balance following pediatric intensive care unit admission: a longitudinal study of critically ill children.
    Oosterveld MJ; Van Der Kuip M; De Meer K; De Greef HJ; Gemke RJ
    Pediatr Crit Care Med; 2006 Mar; 7(2):147-53. PubMed ID: 16531947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Assessment of energy metabolism and nutritional supply in children with mechanical ventilation].
    Ji J; Qian S; Yan J
    Zhonghua Er Ke Za Zhi; 2016 Jan; 54(1):28-32. PubMed ID: 26791920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy Balance in Critically Ill Children With Severe Sepsis Using Indirect Calorimetry: A Prospective Cohort Study.
    Ismail J; Bansal A; Jayashree M; Nallasamy K; Attri SV
    J Pediatr Gastroenterol Nutr; 2019 Jun; 68(6):868-873. PubMed ID: 30889134
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicted versus measured resting energy expenditure in patients requiring home parenteral nutrition.
    Ławiński M; Singer P; Gradowski Ł; Gradowska A; Bzikowska A; Majewska K
    Nutrition; 2015; 31(11-12):1328-32. PubMed ID: 26278135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adequate feeding and the usefulness of the respiratory quotient in critically ill children.
    Hulst JM; van Goudoever JB; Zimmermann LJ; Hop WC; Büller HA; Tibboel D; Joosten KF
    Nutrition; 2005 Feb; 21(2):192-8. PubMed ID: 15723748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introducing a new generation indirect calorimeter for estimating energy requirements in adult intensive care unit patients: feasibility, practical considerations, and comparison with a mathematical equation.
    De Waele E; Spapen H; Honoré PM; Mattens S; Van Gorp V; Diltoer M; Huyghens L
    J Crit Care; 2013 Oct; 28(5):884.e1-6. PubMed ID: 23561944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can energy intake alter clinical and hospital outcomes in PICU?
    Larsen BMK; Beggs MR; Leong AY; Kang SH; Persad R; Garcia Guerra G
    Clin Nutr ESPEN; 2018 Apr; 24():41-46. PubMed ID: 29576361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physical activity as a determinant of total energy expenditure in critically ill children.
    van der Kuip M; de Meer K; Westerterp KR; Gemke RJ
    Clin Nutr; 2007 Dec; 26(6):744-51. PubMed ID: 17949862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate determination of energy needs in hospitalized patients.
    Boullata J; Williams J; Cottrell F; Hudson L; Compher C
    J Am Diet Assoc; 2007 Mar; 107(3):393-401. PubMed ID: 17324656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.