These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 19127514)
1. Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia. Melnikov OV; Gorbenko OY; Markelova MN; Kaul AR; Atsarkin VA; Demidov VV; Soto C; Roy EJ; Odintsov BM J Biomed Mater Res A; 2009 Dec; 91(4):1048-55. PubMed ID: 19127514 [TBL] [Abstract][Full Text] [Related]
2. Solution to the bioheat equation for hyperthermia with La(1-x)Ag(y)MnO(3-delta) nanoparticles: the effect of temperature autostabilization. Atsarkin VA; Levkin LV; Posvyanskiy VS; Melnikov OV; Markelova MN; Gorbenko OY; Kaul AR Int J Hyperthermia; 2009 May; 25(3):240-7. PubMed ID: 19437239 [TBL] [Abstract][Full Text] [Related]
3. Silica encapsulated manganese perovskite nanoparticles for magnetically induced hyperthermia without the risk of overheating. Kaman O; Pollert E; Veverka P; Veverka M; Hadová E; Knízek K; Marysko M; Kaspar P; Klementová M; Grünwaldová V; Vasseur S; Epherre R; Mornet S; Goglio G; Duguet E Nanotechnology; 2009 Jul; 20(27):275610. PubMed ID: 19531865 [TBL] [Abstract][Full Text] [Related]
4. Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia. Solopan S; Belous A; Yelenich A; Bubnovskaya L; Kovelskaya A; Podoltsev A; Kondratenko I; Osinsky S Exp Oncol; 2011 Sep; 33(3):130-5. PubMed ID: 21956464 [TBL] [Abstract][Full Text] [Related]
5. Using thermal energy produced by irradiation of Mn-Zn ferrite magnetic nanoparticles (MZF-NPs) for heat-inducible gene expression. Tang QS; Zhang DS; Cong XM; Wan ML; Jin LQ Biomaterials; 2008 Jun; 29(17):2673-9. PubMed ID: 18396332 [TBL] [Abstract][Full Text] [Related]
6. Preparation of carboplatin-Fe@C-loaded chitosan nanoparticles and study on hyperthermia combined with pharmacotherapy for liver cancer. Li FR; Yan WH; Guo YH; Qi H; Zhou HX Int J Hyperthermia; 2009 Aug; 25(5):383-91. PubMed ID: 19391033 [TBL] [Abstract][Full Text] [Related]
7. Nanohyperthermia of malignant tumors. II. In vivo tumor heating with manganese perovskite nanoparticles. Bubnovskaya L; Belous A; Solopan A; Podoltsev A; Kondratenko I; Kovelskaya A; Sergienko T; Osinsky S Exp Oncol; 2012 Dec; 34(4):336-9. PubMed ID: 23302992 [TBL] [Abstract][Full Text] [Related]
8. Magnetocaloric effect in potassium doped lanthanum manganite perovskites prepared by a pyrophoric method. Das S; Dey TK J Phys Condens Matter; 2006 Aug; 18(32):7629-41. PubMed ID: 21690875 [TBL] [Abstract][Full Text] [Related]
9. Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Thorat ND; Shinde KP; Pawar SH; Barick KC; Betty CA; Ningthoujam RS Dalton Trans; 2012 Mar; 41(10):3060-71. PubMed ID: 22277953 [TBL] [Abstract][Full Text] [Related]
10. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Lu J; Ma S; Sun J; Xia C; Liu C; Wang Z; Zhao X; Gao F; Gong Q; Song B; Shuai X; Ai H; Gu Z Biomaterials; 2009 May; 30(15):2919-28. PubMed ID: 19230966 [TBL] [Abstract][Full Text] [Related]
11. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration. Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472 [TBL] [Abstract][Full Text] [Related]
12. A frequency-adjustable electromagnet for hyperthermia measurements on magnetic nanoparticles. Lacroix LM; Carrey J; Respaud M Rev Sci Instrum; 2008 Sep; 79(9):093909. PubMed ID: 19044430 [TBL] [Abstract][Full Text] [Related]
13. Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. Kim DH; Kim KN; Kim KM; Lee YK J Biomed Mater Res A; 2009 Jan; 88(1):1-11. PubMed ID: 18257079 [TBL] [Abstract][Full Text] [Related]
14. Functionalization of La(0.7)Sr(0.3)MnO3 nanoparticles with polymer: studies on enhanced hyperthermia and biocompatibility properties for biomedical applications. Thorat ND; Khot VM; Salunkhe AB; Ningthoujam RS; Pawar SH Colloids Surf B Biointerfaces; 2013 Apr; 104():40-7. PubMed ID: 23298586 [TBL] [Abstract][Full Text] [Related]
15. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310 [TBL] [Abstract][Full Text] [Related]
16. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging. Huang H; Xie Q; Kang M; Zhang B; Zhang H; Chen J; Zhai C; Yang D; Jiang B; Wu Y Nanotechnology; 2009 Sep; 20(36):365101. PubMed ID: 19687538 [TBL] [Abstract][Full Text] [Related]
17. Thermoresponsive core-shell magnetic nanoparticles for combined modalities of cancer therapy. Purushotham S; Chang PE; Rumpel H; Kee IH; Ng RT; Chow PK; Tan CK; Ramanujan RV Nanotechnology; 2009 Jul; 20(30):305101. PubMed ID: 19581698 [TBL] [Abstract][Full Text] [Related]
18. Enhanced magnetic fluid hyperthermia by micellar magnetic nanoclusters composed of Mn(x)Zn(1-x)Fe(2)O(4) nanoparticles for induced tumor cell apoptosis. Qu Y; Li J; Ren J; Leng J; Lin C; Shi D ACS Appl Mater Interfaces; 2014 Oct; 6(19):16867-79. PubMed ID: 25204363 [TBL] [Abstract][Full Text] [Related]
19. The structures and antibacterial properties of nano-SiO2 supported silver/zinc-silver materials. Jia H; Hou W; Wei L; Xu B; Liu X Dent Mater; 2008 Feb; 24(2):244-9. PubMed ID: 17822754 [TBL] [Abstract][Full Text] [Related]
20. Numerical study on the multi-region bio-heat equation to model magnetic fluid hyperthermia (MFH) using low Curie temperature nanoparticles. Zhang C; Johnson DT; Brazel CS IEEE Trans Nanobioscience; 2008 Dec; 7(4):267-75. PubMed ID: 19203870 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]