These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19127982)

  • 41. Ab initio fragment molecular orbital (FMO) method applied to analysis of the ligand-protein interaction in a pheromone-binding protein.
    Nemoto T; Fedorov DG; Uebayasi M; Kanazawa K; Kitaura K; Komeiji Y
    Comput Biol Chem; 2005 Dec; 29(6):434-9. PubMed ID: 16290169
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Chromophore Structure of Photochromic Fluorescent Protein Dronpa: Acid-Base Equilibrium of Two Cis Configurations.
    Higashino A; Mizuno M; Mizutani Y
    J Phys Chem B; 2016 Apr; 120(13):3353-9. PubMed ID: 26991398
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Radiationless decay of red fluorescent protein chromophore models via twisted intramolecular charge-transfer states.
    Olsen S; Smith SC
    J Am Chem Soc; 2007 Feb; 129(7):2054-65. PubMed ID: 17253685
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A combined effective fragment potential-fragment molecular orbital method. I. The energy expression and initial applications.
    Nagata T; Fedorov DG; Kitaura K; Gordon MS
    J Chem Phys; 2009 Jul; 131(2):024101. PubMed ID: 19603964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method.
    Kurisaki I; Fukuzawa K; Komeiji Y; Mochizuki Y; Nakano T; Imada J; Chmielewski A; Rothstein SM; Watanabe H; Tanaka S
    Biophys Chem; 2007 Oct; 130(1-2):1-9. PubMed ID: 17656003
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A fragment molecular-orbital-multicomponent molecular-orbital method for analyzing HD isotope effects in large molecules.
    Ishimoto T; Tachikawa M; Nagashima U
    J Chem Phys; 2006 Jan; 124(1):14112. PubMed ID: 16409029
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Photon antibunching proves emission from a single subunit in the autofluorescent protein DsRed.
    Sánchez-Mosteiro G; Koopman M; van Dijk EM; Hernando J; van Hulst NF; García-Parajó MF
    Chemphyschem; 2004 Nov; 5(11):1782-5. PubMed ID: 15580941
    [No Abstract]   [Full Text] [Related]  

  • 48. Theory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital models.
    Ess DH; Houk KN
    J Am Chem Soc; 2008 Aug; 130(31):10187-98. PubMed ID: 18613669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An exploration of electronic structure and nuclear dynamics in tropolone: II. The A (1)B2 (pi* pi) excited state.
    Burns LA; Murdock D; Vaccaro PH
    J Chem Phys; 2009 Apr; 130(14):144304. PubMed ID: 19368442
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insight into the common mechanism of the chromophore formation in the red fluorescent proteins: the elusive blue intermediate revealed.
    Bravaya KB; Subach OM; Korovina N; Verkhusha VV; Krylov AI
    J Am Chem Soc; 2012 Feb; 134(5):2807-14. PubMed ID: 22239269
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Brighter Red Fluorescent Proteins by Rational Design of Triple-Decker Motif.
    Pandelieva AT; Baran MJ; Calderini GF; McCann JL; Tremblay V; Sarvan S; Davey JA; Couture JF; Chica RA
    ACS Chem Biol; 2016 Feb; 11(2):508-17. PubMed ID: 26697759
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Physicochemical properties of blue fluorescent protein determined via molecular dynamics simulation.
    Krasnenko V; Tkaczyk AH; Tkaczyk ER; Mauring K
    Biopolymers; 2008 Dec; 89(12):1136-43. PubMed ID: 18690664
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chromophore interactions leading to different absorption spectra in mNeptune1 and mCardinal red fluorescent proteins.
    Armengol P; Gelabert R; Moreno M; Lluch JM
    Phys Chem Chem Phys; 2016 Jun; 18(25):16964-76. PubMed ID: 27294977
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Molecular modelling of the pH influence in the geometry and the absorbance spectrum of near-infrared TagRFP675 fluorescent protein.
    Randino C; Gelabert R; Moreno M; Lluch JM; Piatkevich KD
    Phys Chem Chem Phys; 2015 Nov; 17(43):29363-73. PubMed ID: 26473582
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A structural basis for the pH-dependent increase in fluorescence efficiency of chromoproteins.
    Battad JM; Wilmann PG; Olsen S; Byres E; Smith SC; Dove SG; Turcic KN; Devenish RJ; Rossjohn J; Prescott M
    J Mol Biol; 2007 May; 368(4):998-1010. PubMed ID: 17376484
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cis-trans photoisomerization of fluorescent-protein chromophores.
    Voliani V; Bizzarri R; Nifosì R; Abbruzzetti S; Grandi E; Viappiani C; Beltram F
    J Phys Chem B; 2008 Aug; 112(34):10714-22. PubMed ID: 18671358
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular dynamics study of zinc binding to cysteines in a peptide mimic of the alcohol dehydrogenase structural zinc site.
    Brandt EG; Hellgren M; Brinck T; Bergman T; Edholm O
    Phys Chem Chem Phys; 2009 Feb; 11(6):975-83. PubMed ID: 19177216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The 2.2 A crystal structure of a pocilloporin pigment reveals a nonplanar chromophore conformation.
    Prescott M; Ling M; Beddoe T; Oakley AJ; Dove S; Hoegh-Guldberg O; Devenish RJ; Rossjohn J
    Structure; 2003 Mar; 11(3):275-84. PubMed ID: 12623015
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO).
    Fedorov DG; Kitaura K; Li H; Jensen JH; Gordon MS
    J Comput Chem; 2006 Jun; 27(8):976-85. PubMed ID: 16604514
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Origin of the anomalous two-photon absorption in fluorescent protein DsRed.
    Nifosì R; Luo Y
    J Phys Chem B; 2007 Jan; 111(3):505-7. PubMed ID: 17228906
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.