These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 19128007)
1. Stabilization of beta-galactosidase (from peas) by immobilization onto amberlite MB-150 beads and its application in lactose hydrolysis. Dwevedi A; Kayastha AM J Agric Food Chem; 2009 Jan; 57(2):682-8. PubMed ID: 19128007 [TBL] [Abstract][Full Text] [Related]
2. Optimal immobilization of beta-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Dwevedi A; Kayastha AM Bioresour Technol; 2009 May; 100(10):2667-75. PubMed ID: 19195879 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of β-galactosidase on tannic acid stabilized silver nanoparticles: A safer way towards its industrial application. Arsalan A; Alam MF; Farheen Zofair SF; Ahmad S; Younus H Spectrochim Acta A Mol Biomol Spectrosc; 2020 Feb; 226():117637. PubMed ID: 31606677 [TBL] [Abstract][Full Text] [Related]
5. Cicer α-galactosidase immobilization onto chitosan and Amberlite MB-150: optimization, characterization, and its applications. Singh N; Kayastha AM Carbohydr Res; 2012 Sep; 358():61-6. PubMed ID: 22818828 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Properties and Lactose Hydrolysis Efficiencies of Food-Grade β-Galactosidases Immobilized on Various Supports: a Comparative Approach. Katrolia P; Liu X; Li G; Kopparapu NK Appl Biochem Biotechnol; 2019 Jun; 188(2):410-423. PubMed ID: 30484137 [TBL] [Abstract][Full Text] [Related]
7. Stabilization of a raw-starch-digesting amylase by multipoint covalent attachment on glutaraldehyde-activated amberlite beads. Nwagu TN; Okolo BN; Aoyagi H J Microbiol Biotechnol; 2012 May; 22(5):628-36. PubMed ID: 22561856 [TBL] [Abstract][Full Text] [Related]
8. Enhancement of β-galactosidase catalytic activity and stability through covalent immobilization onto alginate/tea waste beads and evaluating its impact on the quality of some dairy products. Hassan ME; Ibrahim GE; Abdella MAA Int J Biol Macromol; 2024 Oct; 278(Pt 2):134810. PubMed ID: 39154676 [TBL] [Abstract][Full Text] [Related]
9. Cell disruption optimization and covalent immobilization of beta-D-galactosidase from Kluyveromyces marxianus YW-1 for lactose hydrolysis in milk. Puri M; Gupta S; Pahuja P; Kaur A; Kanwar JR; Kennedy JF Appl Biochem Biotechnol; 2010 Jan; 160(1):98-108. PubMed ID: 19198767 [TBL] [Abstract][Full Text] [Related]
10. Hydrolysis of lactose using β-d-galactosidase immobilized in a modified Arabic gum-based hydrogel for the production of lactose-free/low-lactose milk. Wolf M; Gasparin BC; Paulino AT Int J Biol Macromol; 2018 Aug; 115():157-164. PubMed ID: 29654861 [TBL] [Abstract][Full Text] [Related]
11. Insights into pH-induced conformational transition of β-galactosidase from Pisum sativum leading to its multimerization. Dwevedi A; Dubey VK; Jagannadham MV; Kayastha AM Appl Biochem Biotechnol; 2010 Dec; 162(8):2294-312. PubMed ID: 20549573 [TBL] [Abstract][Full Text] [Related]
12. Immobilization and characterization of beta-galactosidase from the plant gram chicken bean (Cicer arietinum). Evolution of its enzymatic actions in the hydrolysis of lactose. Sun S; Li X; Nu S; You X J Agric Food Chem; 1999 Mar; 47(3):819-23. PubMed ID: 10552372 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Verma ML; Barrow CJ; Kennedy JF; Puri M Int J Biol Macromol; 2012 Mar; 50(2):432-7. PubMed ID: 22230612 [TBL] [Abstract][Full Text] [Related]
14. Efficient bioconversion of lactose in milk and whey: immobilization and biochemical characterization of a beta-galactosidase from the dairy Streptococcus thermophilus LMD9 strain. Rhimi M; Boisson A; Dejob M; Boudebouze S; Maguin E; Haser R; Aghajari N Res Microbiol; 2010 Sep; 161(7):515-25. PubMed ID: 20472057 [TBL] [Abstract][Full Text] [Related]
15. Immobilized preparation of cold-adapted and halotolerant Antarctic beta-galactosidase as a highly stable catalyst in lactose hydrolysis. Makowski K; Białkowska A; Szczesna-Antczak M; Kalinowska H; Kur J; Cieśliński H; Turkiewicz M FEMS Microbiol Ecol; 2007 Feb; 59(2):535-42. PubMed ID: 17059485 [TBL] [Abstract][Full Text] [Related]
16. Lactose hydrolysis using β-galactosidase from Carvalho CT; Lima WBB; de Medeiros FGM; Dantas JMM; de Araújo Padilha CE; Dos Santos ES; de Macêdo GR; de Sousa Júnior FC Prep Biochem Biotechnol; 2021; 51(7):714-722. PubMed ID: 33287624 [TBL] [Abstract][Full Text] [Related]
17. Hydrolysis of lactose by free and immobilized beta-galactosidase from Thermus sp. strain T2. Ladero M; Perez MT; Santos A; Garcia-Ochoa F Biotechnol Bioeng; 2003 Jan; 81(2):241-52. PubMed ID: 12451560 [TBL] [Abstract][Full Text] [Related]
18. Hydrolysis of whey lactose by immobilized β-galactosidase in a bioreactor with a spirally wound membrane. Vasileva N; Ivanov Y; Damyanova S; Kostova I; Godjevargova T Int J Biol Macromol; 2016 Jan; 82():339-46. PubMed ID: 26586589 [TBL] [Abstract][Full Text] [Related]
19. High stability of immobilized β-D-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Klein MP; Fallavena LP; Schöffer Jda N; Ayub MA; Rodrigues RC; Ninow JL; Hertz PF Carbohydr Polym; 2013 Jun; 95(1):465-70. PubMed ID: 23618294 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of recombinant thermostable beta-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. Chen W; Chen H; Xia Y; Yang J; Zhao J; Tian F; Zhang HP; Zhang H J Dairy Sci; 2009 Feb; 92(2):491-8. PubMed ID: 19164659 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]