These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19128210)
1. NF-kappa B, a potential therapeutic target for the treatment of multiple sclerosis. Yan J; Greer JM CNS Neurol Disord Drug Targets; 2008 Dec; 7(6):536-57. PubMed ID: 19128210 [TBL] [Abstract][Full Text] [Related]
2. Nuclear factor kappa B (NF-κB) in multiple sclerosis pathology. Mc Guire C; Prinz M; Beyaert R; van Loo G Trends Mol Med; 2013 Oct; 19(10):604-13. PubMed ID: 24007818 [TBL] [Abstract][Full Text] [Related]
3. Interferon-β 1a Modulates Expression of RAGE but Not S100A12 and Nuclear Factor-κB in Multiple Sclerosis Patients. Asadikaram G; Noroozi S; Ebrahimi Meimand HA; Sanjari M; Zainodini N; Khoramdelazad H; Shahrokhi N; Kazemi Arababadi M Neuroimmunomodulation; 2016; 23(5-6):345-351. PubMed ID: 28433998 [TBL] [Abstract][Full Text] [Related]
4. Significance of NF-κB as a pivotal therapeutic target in the neurodegenerative pathologies of Alzheimer's disease and multiple sclerosis. Srinivasan M; Lahiri DK Expert Opin Ther Targets; 2015 Apr; 19(4):471-87. PubMed ID: 25652642 [TBL] [Abstract][Full Text] [Related]
5. Mitoxantrone: a review of its use in multiple sclerosis. Scott LJ; Figgitt DP CNS Drugs; 2004; 18(6):379-96. PubMed ID: 15089110 [TBL] [Abstract][Full Text] [Related]
6. Targeting Nuclear Factor-Kappa B Signaling Pathway by Curcumin: Implications for the Treatment of Multiple Sclerosis. Gachpazan M; Habbibirad S; Kashani H; Jamialahmadi T; Rahimi HR; Sahebkar A Adv Exp Med Biol; 2021; 1291():41-53. PubMed ID: 34331683 [TBL] [Abstract][Full Text] [Related]
7. NF-kappa B as a therapeutic target in autoimmune disease. O'Sullivan B; Thompson A; Thomas R Expert Opin Ther Targets; 2007 Feb; 11(2):111-22. PubMed ID: 17227228 [TBL] [Abstract][Full Text] [Related]
8. Molecular network analysis of T-cell transcriptome suggests aberrant regulation of gene expression by NF-kappaB as a biomarker for relapse of multiple sclerosis. Satoh J; Misawa T; Tabunoki H; Yamamura T Dis Markers; 2008; 25(1):27-35. PubMed ID: 18776589 [TBL] [Abstract][Full Text] [Related]
9. What is new in the treatment of multiple sclerosis? Weinstock-Guttman B; Jacobs LD Drugs; 2000 Mar; 59(3):401-10. PubMed ID: 10776827 [TBL] [Abstract][Full Text] [Related]
10. The sphingosine-1-phosphate receptor: A novel therapeutic target for multiple sclerosis and other autoimmune diseases. Mao-Draayer Y; Sarazin J; Fox D; Schiopu E Clin Immunol; 2017 Feb; 175():10-15. PubMed ID: 27890706 [TBL] [Abstract][Full Text] [Related]
11. Chemokine network in multiple sclerosis: role in pathogenesis and targeting for future treatments. Galimberti D; Bresolin N; Scarpini E Expert Rev Neurother; 2004 May; 4(3):439-53. PubMed ID: 15853541 [TBL] [Abstract][Full Text] [Related]
12. Molecular Approach to Targeted Therapy for Multiple Sclerosis. Sherbet GV CNS Neurol Disord Drug Targets; 2016; 15(1):20-34. PubMed ID: 26560895 [TBL] [Abstract][Full Text] [Related]
13. Transferrin in patients with multiple sclerosis: a comparison among various subgroups of multiple sclerosis patients. Zeman D; Adam P; Kalistová H; Sobek O; Kelbich P; Andel J; Andel M Acta Neurol Scand; 2000 Feb; 101(2):89-94. PubMed ID: 10685854 [TBL] [Abstract][Full Text] [Related]
14. Fingolimod prevents blood-brain barrier disruption induced by the sera from patients with multiple sclerosis. Nishihara H; Shimizu F; Sano Y; Takeshita Y; Maeda T; Abe M; Koga M; Kanda T PLoS One; 2015; 10(3):e0121488. PubMed ID: 25774903 [TBL] [Abstract][Full Text] [Related]
15. Low, but not high, dose triptolide controls neuroinflammation and improves behavioral deficits in toxic model of multiple sclerosis by dampening of NF-κB activation and acceleration of intrinsic myelin repair. Sanadgol N; Golab F; Mostafaie A; Mehdizadeh M; Khalseh R; Mahmoudi M; Abdollahi M; Vakilzadeh G; Taghizadeh G; Sharifzadeh M Toxicol Appl Pharmacol; 2018 Mar; 342():86-98. PubMed ID: 29407366 [TBL] [Abstract][Full Text] [Related]
16. Eomes-expressing T-helper cells as potential target of therapy in chronic neuroinflammation. Oki S Neurochem Int; 2019 Nov; 130():104348. PubMed ID: 30508560 [TBL] [Abstract][Full Text] [Related]
17. Multiple functional therapeutic effects of DL-3-n-butylphthalide in the cuprizone model of demyelination. Wu Y; Dong L; Huang Q; Sun L; Liao Y; Tang Y; Wu Y Life Sci; 2019 Sep; 232():116501. PubMed ID: 31163175 [TBL] [Abstract][Full Text] [Related]
18. Current multiple sclerosis treatments have improved our understanding of MS autoimmune pathogenesis. Martin R; Sospedra M; Rosito M; Engelhardt B Eur J Immunol; 2016 Sep; 46(9):2078-90. PubMed ID: 27467894 [TBL] [Abstract][Full Text] [Related]
19. Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. Klotz L; Schmidt M; Giese T; Sastre M; Knolle P; Klockgether T; Heneka MT J Immunol; 2005 Oct; 175(8):4948-55. PubMed ID: 16210596 [TBL] [Abstract][Full Text] [Related]
20. Protective effects of monomethyl fumarate at the inflamed blood-brain barrier. Lim JL; van der Pol SM; Di Dio F; van Het Hof B; Kooij G; de Vries HE; van Horssen J Microvasc Res; 2016 May; 105():61-9. PubMed ID: 26679389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]