These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. A comparative study of cobra (Naja) venom enzymes. Tan NH; Tan CS Comp Biochem Physiol B; 1988; 90(4):745-50. PubMed ID: 2854766 [TBL] [Abstract][Full Text] [Related]
3. Enzymatic activities and other characteristics of Crotalus durissus cumanensis venom. Grillo Rodriguez O; Scannone HR; Parra ND Toxicon; 1974 May; 12(3):297-302. PubMed ID: 4376285 [No Abstract] [Full Text] [Related]
4. Snake venom components and their cross-reactivity: a review. Berger BJ; Bhatti AR Biochem Cell Biol; 1989 Sep; 67(9):597-601. PubMed ID: 2553075 [TBL] [Abstract][Full Text] [Related]
5. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Fox JW Toxicon; 2013 Feb; 62():75-82. PubMed ID: 23010165 [TBL] [Abstract][Full Text] [Related]
6. The enzymatic content of the venoms of the sea nettle and the Portuguese man-o'-war. Burnett JW; Calton GJ Comp Biochem Physiol B; 1974 Apr; 47(4):815-20. PubMed ID: 4151638 [No Abstract] [Full Text] [Related]
7. Search for relationships among the hemolytic, phospholipolytic, and neurotoxic activities of snake venoms. Jeng TW; Hendon RA; Fraenkel-Conrat H Proc Natl Acad Sci U S A; 1978 Feb; 75(2):600-4. PubMed ID: 273221 [TBL] [Abstract][Full Text] [Related]
8. Venom of the Brown Treesnake, Boiga irregularis: ontogenetic shifts and taxa-specific toxicity. Mackessy SP; Sixberry NM; Heyborne WH; Fritts T Toxicon; 2006 Apr; 47(5):537-48. PubMed ID: 16545413 [TBL] [Abstract][Full Text] [Related]
9. Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins. Burden SJ; Hartzell HC; Yoshikami D Proc Natl Acad Sci U S A; 1975 Aug; 72(8):3245-9. PubMed ID: 1081230 [TBL] [Abstract][Full Text] [Related]
10. Snake venoms and the neuromuscular junction. Lewis RL; Gutmann L Semin Neurol; 2004 Jun; 24(2):175-9. PubMed ID: 15257514 [TBL] [Abstract][Full Text] [Related]
11. Isolation and characterization of a presynaptic neurotoxin, P-elapitoxin-Bf1a from Malaysian Bungarus fasciatus venom. Rusmili MR; Yee TT; Mustafa MR; Hodgson WC; Othman I Biochem Pharmacol; 2014 Oct; 91(3):409-16. PubMed ID: 25064255 [TBL] [Abstract][Full Text] [Related]
12. Neuromuscular action of venom from the South American colubrid snake Philodryas patagoniensis. Carreiro da Costa RS; Prudêncio L; Ferrari EF; Souza GH; de Mello SM; Prianti Júnior AC; Ribeiro W; Zamunér SR; Hyslop S; Cogo JC Comp Biochem Physiol C Toxicol Pharmacol; 2008 Jul; 148(1):31-8. PubMed ID: 18455482 [TBL] [Abstract][Full Text] [Related]
13. Accumulation of some secretory enzymes in venom glands of Vipera palaestinae. Brown RS; Brown MB; Bdolah A; Kochva E Am J Physiol; 1975 Dec; 229(6):1675-9. PubMed ID: 174447 [TBL] [Abstract][Full Text] [Related]
14. [Neurotoxins in snake venoms (author's transl)]. Hayashi K; Ota M Tanpakushitsu Kakusan Koso; 1975 Jan; 20(1):53-69. PubMed ID: 124448 [No Abstract] [Full Text] [Related]
15. Short communications the presynaptic neuromuscular blocking action of taipoxin. A comparison with beta-bungarotoxin and crotoxin. Chang CC; Lee JD; Eaker D; Fohlman J Toxicon; 1977; 15(6):571-6. PubMed ID: 198917 [No Abstract] [Full Text] [Related]
16. [Biochemical and immunological research on snake venom. II. Study of the enzymatic and toxic properties of the fractions obtained by filtration of the venom of Naja nigricollis on sephadex]. Bouquet P; Izard Y; Meaume J; Jouannet M; Ronsseray AM; Dumarey C; Ozenne S; Casseault S Ann Inst Pasteur (Paris); 1967 Feb; 112(2):213-35. PubMed ID: 4291718 [No Abstract] [Full Text] [Related]
17. [The effect of snake venom polypeptides on the cholinoreceptive membranes of marine invertebrates]. Magazanik LG; Lukomskaia NIa; Fedorov VV; Potap'eva NN; Snetkov VA Zh Evol Biokhim Fiziol; 1974; 10(4):411-2. PubMed ID: 4463625 [No Abstract] [Full Text] [Related]
18. The pharmacological role of phosphatases (acid and alkaline phosphomonoesterases) in snake venoms related to release of purines - a multitoxin. Dhananjaya BL; D'Souza CJ Basic Clin Pharmacol Toxicol; 2011 Feb; 108(2):79-83. PubMed ID: 21156030 [TBL] [Abstract][Full Text] [Related]
19. Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Mohamed Abd El-Aziz T; Garcia Soares A; Stockand JD Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31557973 [TBL] [Abstract][Full Text] [Related]
20. Acetylcholinesterase from snake venom as a model for its nerve and muscle counterpart. Cousin X; Bon C J Nat Toxins; 1999 Jun; 8(2):285-94. PubMed ID: 10410339 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]