These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 19128805)

  • 1. Serial displacement chromatofocusing and its applications in multidimensional chromatography and gel electrophoresis: I. Theory and general considerations.
    Shen H; Frey DD
    J Chromatogr A; 2009 Feb; 1216(6):967-76. PubMed ID: 19128805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serial displacement chromatofocusing and its applications in multidimensional chromatography and gel electrophoresis: II. Experimental results.
    Shen H; Li X; Bieberich C; Frey DD
    J Chromatogr A; 2009 Feb; 1216(6):977-84. PubMed ID: 19128804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatofocusing of peptides and proteins using linear pH gradients formed on strong ion-exchange adsorbents.
    Kang X; Frey DD
    Biotechnol Bioeng; 2004 Aug; 87(3):376-87. PubMed ID: 15281112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of the inadvertent pH transient formed by a salt gradient in the ion-exchange chromatography of proteins.
    PĂ©rez JS; Frey DD
    Biotechnol Prog; 2005; 21(3):902-10. PubMed ID: 15932272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification of recombinant green fluorescent protein using chromatofocusing with a pH gradient composed of multiple stepwise fronts.
    Narahari CR; Randers-Eichhorn L; Strong JC; Ramasubramanyan N; Rao G; Frey DD
    Biotechnol Prog; 2001; 17(1):150-60. PubMed ID: 11170493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isoelectric point-based prefractionation of proteins from crude biological samples prior to two-dimensional gel electrophoresis.
    Sahab ZJ; Suh Y; Sang QX
    J Proteome Res; 2005; 4(6):2266-72. PubMed ID: 16335975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fully automatic separation and identification of phosphopeptides by continuous pH-gradient anion exchange online coupled with reversed-phase liquid chromatography mass spectrometry.
    Dai J; Wang LS; Wu YB; Sheng QH; Wu JR; Shieh CH; Zeng R
    J Proteome Res; 2009 Jan; 8(1):133-41. PubMed ID: 19053533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphoteric, buffering chromatographic beads for proteome prefractionation. I: theoretical model.
    Fortis F; Girot P; Brieau O; Boschetti E; Castagna A; Righetti PG
    Proteomics; 2005 Feb; 5(3):620-8. PubMed ID: 15693062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Displacement chromatography of proteins using a retained pH front in a hydrophobic charge induction chromatography column.
    Pinto ND; Frey DD
    J Chromatogr A; 2015 Mar; 1387():53-9. PubMed ID: 25702080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of mass transfer in the ion-exchange-membrane-partitioned free-flow IEF system for protein separation.
    Cheng JH; Chung TS; Neo SH
    Electrophoresis; 2009 Aug; 30(15):2600-12. PubMed ID: 19670232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple, simultaneous, independent gradients for versatile multidimensional liquid chromatography. Part I: Theory.
    Hirsh AG; Tsonev LI
    J Chromatogr A; 2012 May; 1236():51-62. PubMed ID: 22440667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-performance cation-exchange chromatofocusing of proteins.
    Kang X; Frey DD
    J Chromatogr A; 2003 Mar; 991(1):117-28. PubMed ID: 12703906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micropreparative isoelectric focusing protein separation in a suspended drop.
    Egatz-Gomez A; Thormann W
    Electrophoresis; 2011 Jun; 32(12):1433-7. PubMed ID: 21626519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing sample complexity in proteomics by chromatofocusing with simple buffer mixtures.
    Shen H; Li X; Bieberich CJ; Frey DD
    Methods Mol Biol; 2008; 424():187-203. PubMed ID: 18369863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.
    Kang X; Kutzko JP; Hayes ML; Frey DD
    J Chromatogr A; 2013 Mar; 1283():89-97. PubMed ID: 23428023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Displacement chromatography of proteins using a self-sharpening pH front formed by adsorbed buffering species as the displacer.
    Narahari CR; Strong JC; Frey DD
    J Chromatogr A; 1998 Nov; 825(2):115-26. PubMed ID: 9842719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation and experiment of temperature and cosolvent effects in reversed phase chromatography of peptides.
    Makrodimitris K; Fernandez EJ; Woolf TB; O'Connell JP
    Biotechnol Prog; 2005; 21(3):893-6. PubMed ID: 15932270
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Displacement chromatography of proteins on hydrophobic charge induction adsorbent column.
    Zhao G; Sun Y
    J Chromatogr A; 2007 Sep; 1165(1-2):109-15. PubMed ID: 17692858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH-gradient ion-exchange chromatography: an analytical tool for design and optimization of protein separations.
    Ahamed T; Nfor BK; Verhaert PD; van Dedem GW; van der Wielen LA; Eppink MH; van de Sandt EJ; Ottens M
    J Chromatogr A; 2007 Sep; 1164(1-2):181-8. PubMed ID: 17673242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple, two-component buffer enhances use of chromatofocusing for processing of therapeutic proteins.
    Logan KA; Lagerlund I; Chamow SM
    Biotechnol Bioeng; 1999 Jan; 62(2):208-15. PubMed ID: 10099531
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.