These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 19128874)

  • 41. An investigation into the effect of a ceramic particle trap on the chemical mutagens in diesel exhaust.
    Bagley ST; Dorie LD; Leddy DG; Johnson JH
    Res Rep Health Eff Inst; 1987 Jan; (5):1-67. PubMed ID: 2484024
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterising vehicle emissions from the burning of biodiesel made from vegetable oil.
    Zou L; Atkinson S
    Environ Technol; 2003 Oct; 24(10):1253-60. PubMed ID: 14669805
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effects of retrofitting emission control systems on in-use heavy diesel vehicles.
    Millstein DE; Harley RA
    Environ Sci Technol; 2010 Jul; 44(13):5042-8. PubMed ID: 20521811
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterization of atmospheric particulates, particle-bound transition metals and polycyclic aromatic hydrocarbons of urban air in the centre of Athens (Greece).
    Valavanidis A; Fiotakis K; Vlahogianni T; Bakeas EB; Triantafillaki S; Paraskevopoulou V; Dassenakis M
    Chemosphere; 2006 Oct; 65(5):760-8. PubMed ID: 16674985
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Impact of High-Voltage Discharge After-Treatment Technology on Diesel Engine Particulate Matter Composition and Gaseous Emissions.
    Wongchang T; Sittichompoo S; Theinnoi K; Sawatmongkhon B; Jugjai S
    ACS Omega; 2021 Aug; 6(32):21181-21192. PubMed ID: 34423226
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prediction of voltage required for nonthermal plasma based diesel exhaust treatment for removal of nitrogen oxides.
    Allamsetty S; Mohapatro S; Kumar P
    Environ Sci Pollut Res Int; 2020 Apr; 27(10):11195-11201. PubMed ID: 31960241
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Application for a newly developed high-capacity NOx denuder: low-NOx diesel transformation experiments.
    Samy S; Zielinska B; Sagebiel JC; McDonald JD
    J Air Waste Manag Assoc; 2011 Mar; 61(3):319-23. PubMed ID: 21416759
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Aromatic hydrocarbons. III. Presence in the particulate phase of diesel-engine exhausts and the carcinogenicity of exhaust extracts.
    KOTIN P; FALK HL; THOMAS M
    AMA Arch Ind Health; 1955 Feb; 11(2):113-20. PubMed ID: 13227636
    [No Abstract]   [Full Text] [Related]  

  • 49. Dirty diesel.
    Russell-Jones R
    BMJ; 2016 Dec; 355():i6726. PubMed ID: 28034879
    [No Abstract]   [Full Text] [Related]  

  • 50. Experimental analysis and parameter optimization on the reduction of NOx from diesel engine using RSM and ANN Model.
    Chenniappan M; Suresh R; Rajoo B; Nachimuthu S; Rajaram RG; Malaichamy V
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):66068-66084. PubMed ID: 35488989
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Formation and destruction of CH2O in the exhaust system of a gas engine.
    Alzueta MU; Glarborg P
    Environ Sci Technol; 2003 Oct; 37(19):4512-6. PubMed ID: 14572109
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Polynuclear aromatic hydrocarbons in the particulates of diesel exhausts in railway tunnels and in the particulates of an urban atmosphere.
    MOORE GE; KATZ M
    Int J Air Pollut; 1960 Mar; 2():221-35. PubMed ID: 14423849
    [No Abstract]   [Full Text] [Related]  

  • 53. Plasma-enhanced electrostatic precipitation of diesel exhaust particulates using nanosecond high voltage pulse discharge for mobile source emission control.
    Zhang B; Aravind I; Yang S; Weng S; Zhao B; Schroeder C; Schroeder W; Thomas M; Umstattd R; Singleton D; Sanders J; Jung H; Cronin SB
    Sci Total Environ; 2022 Dec; 851(Pt 1):158181. PubMed ID: 35988598
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An Overview on the Catalytic Materials Proposed for the Simultaneous Removal of NO
    Castoldi L
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32806621
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nitrogen oxide removal by non-thermal plasma for marine diesel engines.
    Wang Z; Kuang H; Zhang J; Chu L; Ji Y
    RSC Adv; 2019 Feb; 9(10):5402-5416. PubMed ID: 35515900
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EFFECTS OF HYDROCARBON TO OXIDES OF NITROGEN RATIOS ON IRRADIATED AUTO EXHAUST. 1.
    KORTH MW; ROSE AH; STAHMAN RC
    J Air Pollut Control Assoc; 1964 May; 14():168-75. PubMed ID: 14170067
    [No Abstract]   [Full Text] [Related]  

  • 57. THE AUTOMOTIVE CONTRIBUTION TO AIR-BORNE POLYNUCLEAR AROMATIC HYDROCARBONS IN DETROIT.
    COLUCCI JM; BEGEMAN CR
    J Air Pollut Control Assoc; 1965 Mar; 15():113-22. PubMed ID: 14257515
    [No Abstract]   [Full Text] [Related]  

  • 58. Federal motor vehicle emission goals for CO, HC, and NOx based on desired air quality levels.
    Barth DS; Maga JA
    J Air Pollut Control Assoc; 1970 Aug; 20(8):519-24. PubMed ID: 5458303
    [No Abstract]   [Full Text] [Related]  

  • 59. Application of TiO2-coated alumina beads to dielectric barrier discharge-photocatalyst hybrid process for NO and SO2 removals.
    Nasonova A; Pham HC; Kim DJ; Kim WS; Charinpanitkul T; Kim KS
    J Nanosci Nanotechnol; 2011 Feb; 11(2):1323-7. PubMed ID: 21456180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Abatement of malodorants from pesticide factory in dielectric barrier discharges.
    Chen J; Yang J; Pan H; Su Q; Liu Y; Shi Y
    J Hazard Mater; 2010 May; 177(1-3):908-13. PubMed ID: 20116170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.