BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19129104)

  • 1. Liparid and macrourid fishes of the hadal zone: in situ observations of activity and feeding behaviour.
    Jamieson AJ; Fujii T; Solan M; Matsumoto AK; Bagley PM; Priede IG
    Proc Biol Sci; 2009 Mar; 276(1659):1037-45. PubMed ID: 19129104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbiomes of Hadal Fishes across Trench Habitats Contain Similar Taxa and Known Piezophiles.
    Blanton JM; Peoples LM; Gerringer ME; Iacuaniello CM; Gallo ND; Linley TD; Jamieson AJ; Drazen JC; Bartlett DH; Allen EE
    mSphere; 2022 Apr; 7(2):e0003222. PubMed ID: 35306867
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Gerringer ME; Linley TD; Jamieson AJ; Goetze E; Drazen JC
    Zootaxa; 2017 Nov; 4358(1):161-177. PubMed ID: 29245485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New species of Eurythenes from hadal depths of the Mariana Trench, Pacific Ocean (Crustacea: Amphipoda).
    Weston JNJ; Carrillo-Barragan P; Linley TD; Reid WDK; Jamieson AJ
    Zootaxa; 2020 Mar; 4748(1):zootaxa.4748.1.9. PubMed ID: 32230092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Locomotory activity and feeding strategy of the hadal munnopsid isopod Rectisura cf. herculea (Crustacea: Asellota) in the Japan Trench.
    Jamieson AJ; Fujii T; Priede IG
    J Exp Biol; 2012 Sep; 215(Pt 17):3010-7. PubMed ID: 22875769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the Success of the Hadal Snailfishes.
    Gerringer ME
    Integr Org Biol; 2019; 1(1):obz004. PubMed ID: 33791521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Marine fish may be biochemically constrained from inhabiting the deepest ocean depths.
    Yancey PH; Gerringer ME; Drazen JC; Rowden AA; Jamieson A
    Proc Natl Acad Sci U S A; 2014 Mar; 111(12):4461-5. PubMed ID: 24591588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ observation of a macrourid fish at 7259 m in the Japan Trench: swimbladder buoyancy at extreme depth.
    Priede IG; Jamieson AJ; Bond T; Kitazato H
    J Exp Biol; 2024 Feb; 227(3):. PubMed ID: 38230425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure tolerance of deep-sea enzymes can be evolved through increasing volume changes in protein transitions: a study with lactate dehydrogenases from abyssal and hadal fishes.
    Gerringer ME; Yancey PH; Tikhonova OV; Vavilov NE; Zgoda VG; Davydov DR
    FEBS J; 2020 Dec; 287(24):5394-5410. PubMed ID: 32250538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bait-attending amphipods of the Tonga Trench and depth-stratified population structure in the scavenging amphipod
    Wilson JPA; Schnabel KE; Rowden AA; Peart RA; Kitazato H; Ryan KG
    PeerJ; 2018; 6():e5994. PubMed ID: 30568853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mercury isotopes identify near-surface marine mercury in deep-sea trench biota.
    Blum JD; Drazen JC; Johnson MW; Popp BN; Motta LC; Jamieson AJ
    Proc Natl Acad Sci U S A; 2020 Nov; 117(47):29292-29298. PubMed ID: 33199629
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Weston JNJ; Espinosa-Leal L; Wainwright JA; Stewart ECD; González CE; Linley TD; Reid WDK; Hidalgo P; Oliva ME; Ulloa O; Wenzhöfer F; Glud RN; Escribano R; Jamieson AJ
    Mar Biodivers; 2021; 51(3):51. PubMed ID: 34007343
    [No Abstract]   [Full Text] [Related]  

  • 13. Three new deep-sea species of Thyasiridae (Mollusca: Bivalvia) from the abyssal plain of the northwestern Pacific Ocean and hadal depths of the Kuril-Kamchatka Trench.
    Kamenev GM
    PeerJ; 2020; 8():e10405. PubMed ID: 33304654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massive Loss of Olfactory Receptors But Not Trace Amine-Associated Receptors in the World's Deepest-Living Fish (
    Jiang H; Du K; Gan X; Yang L; He S
    Genes (Basel); 2019 Nov; 10(11):. PubMed ID: 31717379
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hadal biosphere: insight into the microbial ecosystem in the deepest ocean on Earth.
    Nunoura T; Takaki Y; Hirai M; Shimamura S; Makabe A; Koide O; Kikuchi T; Miyazaki J; Koba K; Yoshida N; Sunamura M; Takai K
    Proc Natl Acad Sci U S A; 2015 Mar; 112(11):E1230-6. PubMed ID: 25713387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical characteristics of hadal waters in the Izu-Ogasawara Trench of the western Pacific Ocean.
    Gamo T; Shitashima K
    Proc Jpn Acad Ser B Phys Biol Sci; 2018; 94(1):45-55. PubMed ID: 29321446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trace Elemental Analysis of the Exoskeleton, Leg Muscle, and Gut of Three Hadal Amphipods.
    Zhu L; Geng D; Pan B; Li W; Jiang S; Xu Q
    Biol Trace Elem Res; 2022 Mar; 200(3):1395-1407. PubMed ID: 34018124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into the prokaryotic communities of the abyssal-hadal benthic-boundary layer of the Kuril Kamchatka Trench.
    Gorrasi S; Franzetti A; Brandt A; Minzlaff U; Pasqualetti M; Fenice M
    Environ Microbiome; 2023 Aug; 18(1):67. PubMed ID: 37533108
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new predator connecting the abyssal with the hadal in the Kuril-Kamchatka Trench, NW Pacific.
    Lörz AN; Jażdżewska AM; Brandt A
    PeerJ; 2018; 6():e4887. PubMed ID: 29892501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High mercury accumulation in deep-ocean hadal sediments.
    Sanei H; Outridge PM; Oguri K; Stern GA; Thamdrup B; Wenzhöfer F; Wang F; Glud RN
    Sci Rep; 2021 May; 11(1):10970. PubMed ID: 34040077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.