These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 19129126)

  • 41. Single-click beam patterns suggest dynamic changes to the field of view of echolocating Atlantic spotted dolphins (Stenella frontalis) in the wild.
    Jensen FH; Wahlberg M; Beedholm K; Johnson M; de Soto NA; Madsen PT
    J Exp Biol; 2015 May; 218(Pt 9):1314-24. PubMed ID: 25767147
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Fast sensory-motor reactions in echolocating bats to sudden changes during the final buzz and prey intercept.
    Geberl C; Brinkløv S; Wiegrebe L; Surlykke A
    Proc Natl Acad Sci U S A; 2015 Mar; 112(13):4122-7. PubMed ID: 25775538
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Echolocating Daubenton's bats are resilient to broadband, ultrasonic masking noise during active target approaches.
    Foskolos I; Bjerre Pedersen M; Beedholm K; Uebel AS; Macaulay J; Stidsholt L; Brinkløv S; Madsen PT
    J Exp Biol; 2022 Feb; 225(3):. PubMed ID: 35037031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Echolocating bats accumulate information from acoustic snapshots to predict auditory object motion.
    Salles A; Diebold CA; Moss CF
    Proc Natl Acad Sci U S A; 2020 Nov; 117(46):29229-29238. PubMed ID: 33139550
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Three-dimensional sonar beam-width expansion by Japanese house bats (Pipistrellus abramus) during natural foraging.
    Motoi K; Sumiya M; Fujioka E; Hiryu S
    J Acoust Soc Am; 2017 May; 141(5):EL439. PubMed ID: 28599524
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Neural coding of echo-envelope disparities in echolocating bats.
    Borina F; Firzlaff U; Wiegrebe L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 May; 197(5):561-9. PubMed ID: 20740363
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The sonar beam pattern of a flying bat as it tracks tethered insects.
    Ghose K; Moss CF
    J Acoust Soc Am; 2003 Aug; 114(2):1120-31. PubMed ID: 12942989
    [TBL] [Abstract][Full Text] [Related]  

  • 48. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude.
    Hiryu S; Shiori Y; Hosokawa T; Riquimaroux H; Watanabe Y
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep; 194(9):841-51. PubMed ID: 18663454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rapid frequency control of sonar sounds by the FM bat, Miniopterus fuliginosus, in response to spectral overlap.
    Hase K; Miyamoto T; Kobayasi KI; Hiryu S
    Behav Processes; 2016 Jul; 128():126-33. PubMed ID: 27157002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adaptive Echolocation and Flight Behaviors in Bats Can Inspire Technology Innovations for Sonar Tracking and Interception.
    Diebold CA; Salles A; Moss CF
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456142
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field.
    Schul J; Matt F; von Helversen O
    Proc Biol Sci; 2000 Sep; 267(1454):1711-5. PubMed ID: 12233766
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adaptations in the call emission pattern of frugivorous bats when orienting under challenging conditions.
    Beetz MJ; Kössl M; Hechavarría JC
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Aug; 205(4):457-467. PubMed ID: 30997534
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming.
    Chiu C; Xian W; Moss CF
    Proc Natl Acad Sci U S A; 2008 Sep; 105(35):13116-21. PubMed ID: 18725624
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Clutter and conspecifics: a comparison of their influence on echolocation and flight behaviour in Daubenton's bat, Myotis daubentonii.
    Fawcett K; Ratcliffe JM
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Mar; 201(3):295-304. PubMed ID: 25552318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. FM echolocating bats shift frequencies to avoid broadcast-echo ambiguity in clutter.
    Hiryu S; Bates ME; Simmons JA; Riquimaroux H
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):7048-53. PubMed ID: 20351291
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Echolocating Big Brown Bats, Eptesicus fuscus, Modulate Pulse Intervals to Overcome Range Ambiguity in Cluttered Surroundings.
    Wheeler AR; Fulton KA; Gaudette JE; Simmons RA; Matsuo I; Simmons JA
    Front Behav Neurosci; 2016; 10():125. PubMed ID: 27445723
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Natural echolocation sequences evoke echo-delay selectivity in the auditory midbrain of the FM bat, Eptesicus fuscus.
    Macías S; Luo J; Moss CF
    J Neurophysiol; 2018 Sep; 120(3):1323-1339. PubMed ID: 29924708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Echolocation calls of Poey's flower bat (Phyllonycteris poeyi) unlike those of other phyllostomids.
    Mora EC; Macías S
    Naturwissenschaften; 2007 May; 94(5):380-3. PubMed ID: 17149582
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The role of echolocation in the hunting of terrestrial prey--new evidence for an underestimated strategy in the gleaning bat, Megaderma lyra.
    Schmidt S; Hanke S; Pillat J
    J Comp Physiol A; 2000 Oct; 186(10):975-88. PubMed ID: 11138799
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit.
    Vanderelst D; Peremans H
    J Theor Biol; 2018 Nov; 456():305-314. PubMed ID: 30102889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.