These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 19129162)
1. Allantoate amidohydrolase transcript expression is independent of drought tolerance in soybean. Charlson DV; Korth KL; Purcell LC J Exp Bot; 2009; 60(3):847-51. PubMed ID: 19129162 [TBL] [Abstract][Full Text] [Related]
2. Molecular analysis of ureide accumulation under drought stress in Phaseolus vulgaris L. Alamillo JM; Díaz-Leal JL; Sánchez-Moran MV; Pineda M Plant Cell Environ; 2010 Nov; 33(11):1828-37. PubMed ID: 20545885 [TBL] [Abstract][Full Text] [Related]
3. Comparison of inhibition of N2 fixation and ureide accumulation under water deficit in four common bean genotypes of contrasting drought tolerance. Coleto I; Pineda M; Rodiño AP; De Ron AM; Alamillo JM Ann Bot; 2014 May; 113(6):1071-82. PubMed ID: 24638821 [TBL] [Abstract][Full Text] [Related]
4. The ureide-degrading reactions of purine ring catabolism employ three amidohydrolases and one aminohydrolase in Arabidopsis, soybean, and rice. Werner AK; Medina-Escobar N; Zulawski M; Sparkes IA; Cao FQ; Witte CP Plant Physiol; 2013 Oct; 163(2):672-81. PubMed ID: 23940254 [TBL] [Abstract][Full Text] [Related]
5. Leaf ureide degradation and N(2) fixation tolerance to water deficit in soybean. Vadez V; Sinclair TR J Exp Bot; 2001 Jan; 52(354):153-9. PubMed ID: 11181724 [TBL] [Abstract][Full Text] [Related]
6. Molecular and functional characterization of allantoate amidohydrolase from Phaseolus vulgaris. Díaz-Leal JL; Torralbo F; Antonio Quiles F; Pineda M; Alamillo JM Physiol Plant; 2014 Sep; 152(1):43-58. PubMed ID: 24460648 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions. Chen LM; Zhou XA; Li WB; Chang W; Zhou R; Wang C; Sha AH; Shan ZH; Zhang CJ; Qiu DZ; Yang ZL; Chen SL BMC Genomics; 2013 Oct; 14():687. PubMed ID: 24093224 [TBL] [Abstract][Full Text] [Related]
8. Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in the nitrogen fixation response to early drought in soybean. Ladrera R; Marino D; Larrainzar E; González EM; Arrese-Igor C Plant Physiol; 2007 Oct; 145(2):539-46. PubMed ID: 17720761 [TBL] [Abstract][Full Text] [Related]
10. Genome-Wide Association Study of Ureide Concentration in Diverse Maturity Group IV Soybean [Glycine max (L.) Merr.] Accessions. Ray JD; Dhanapal AP; Singh SK; Hoyos-Villegas V; Smith JR; Purcell LC; King CA; Boykin D; Cregan PB; Song Q; Fritschi FB G3 (Bethesda); 2015 Sep; 5(11):2391-403. PubMed ID: 26374596 [TBL] [Abstract][Full Text] [Related]
11. Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. Takagi H; Watanabe S; Tanaka S; Matsuura T; Mori IC; Hirayama T; Shimada H; Sakamoto A BMC Plant Biol; 2018 Nov; 18(1):287. PubMed ID: 30458716 [TBL] [Abstract][Full Text] [Related]
12. Identification of soybean drought-tolerant genotypes and loci correlated with agronomic traits contributes new candidate genes for breeding. Chen L; Fang Y; Li X; Zeng K; Chen H; Zhang H; Yang H; Cao D; Hao Q; Yuan S; Zhang C; Guo W; Chen S; Yang Z; Shan Z; Zhang X; Qiu D; Zhan Y; Zhou XA Plant Mol Biol; 2020 Jan; 102(1-2):109-122. PubMed ID: 31820285 [TBL] [Abstract][Full Text] [Related]
13. ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. Rossdeutsch L; Edwards E; Cookson SJ; Barrieu F; Gambetta GA; Delrot S; Ollat N BMC Plant Biol; 2016 Apr; 16():91. PubMed ID: 27091220 [TBL] [Abstract][Full Text] [Related]
14. Understanding abiotic stress tolerance mechanisms in soybean: a comparative evaluation of soybean response to drought and flooding stress. Mutava RN; Prince SJK; Syed NH; Song L; Valliyodan B; Chen W; Nguyen HT Plant Physiol Biochem; 2015 Jan; 86():109-120. PubMed ID: 25438143 [TBL] [Abstract][Full Text] [Related]
15. Metabolite adjustments in drought tolerant and sensitive soybean genotypes in response to water stress. Silvente S; Sobolev AP; Lara M PLoS One; 2012; 7(6):e38554. PubMed ID: 22685583 [TBL] [Abstract][Full Text] [Related]
16. Enhanced Gene Expression Rather than Natural Polymorphism in Coding Sequence of the OsbZIP23 Determines Drought Tolerance and Yield Improvement in Rice Genotypes. Dey A; Samanta MK; Gayen S; Sen SK; Maiti MK PLoS One; 2016; 11(3):e0150763. PubMed ID: 26959651 [TBL] [Abstract][Full Text] [Related]
17. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars. Hussain RM; Ali M; Feng X; Li X BMC Plant Biol; 2017 Feb; 17(1):55. PubMed ID: 28241800 [TBL] [Abstract][Full Text] [Related]
18. Antioxidant, physiological and biochemical responses of drought susceptible and drought tolerant mustard (Brassica juncea L) genotypes to rhizobacterial inoculation under water deficit stress. Bandeppa S; Paul S; Thakur JK; Chandrashekar N; Umesh DK; Aggarwal C; Asha AD Plant Physiol Biochem; 2019 Oct; 143():19-28. PubMed ID: 31476528 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of drought tolerance of the Vietnamese soybean cultivars provides potential resources for soybean production and genetic engineering. Thu NB; Nguyen QT; Hoang XL; Thao NP; Tran LS Biomed Res Int; 2014; 2014():809736. PubMed ID: 24804248 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the newly developed soybean cultivar DT2008 in relation to the model variety W82 reveals a new genetic resource for comparative and functional genomics for improved drought tolerance. Ha CV; Le DT; Nishiyama R; Watanabe Y; Tran UT; Dong NV; Tran LS Biomed Res Int; 2013; 2013():759657. PubMed ID: 23509774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]