These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 19129198)

  • 1. Preparation and properties of asymmetric vesicles that mimic cell membranes: effect upon lipid raft formation and transmembrane helix orientation.
    Cheng HT; Megha ; London E
    J Biol Chem; 2009 Mar; 284(10):6079-92. PubMed ID: 19129198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of Ordered Lipid Raft Domain Formation by Loss of Lipid Asymmetry.
    St Clair JW; Kakuda S; London E
    Biophys J; 2020 Aug; 119(3):483-492. PubMed ID: 32710822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation and properties of asymmetric large unilamellar vesicles: interleaflet coupling in asymmetric vesicles is dependent on temperature but not curvature.
    Cheng HT; London E
    Biophys J; 2011 Jun; 100(11):2671-8. PubMed ID: 21641312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Structure and Composition Control Consequences of Interleaflet Coupling in Asymmetric Vesicles.
    Wang Q; London E
    Biophys J; 2018 Aug; 115(4):664-678. PubMed ID: 30082033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane Structure-Function Insights from Asymmetric Lipid Vesicles.
    London E
    Acc Chem Res; 2019 Aug; 52(8):2382-2391. PubMed ID: 31386337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ordered raft domains induced by outer leaflet sphingomyelin in cholesterol-rich asymmetric vesicles.
    Lin Q; London E
    Biophys J; 2015 May; 108(9):2212-22. PubMed ID: 25954879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss of plasma membrane lipid asymmetry can induce ordered domain (raft) formation.
    Kakuda S; Suresh P; Li G; London E
    J Lipid Res; 2022 Jan; 63(1):100155. PubMed ID: 34843684
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Membrane Lipid Composition on the Formation of Lipid Ultrananodomains.
    Pathak P; London E
    Biophys J; 2015 Oct; 109(8):1630-8. PubMed ID: 26488654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O; Pathak P; London E
    Biophys J; 2007 Dec; 93(12):4307-18. PubMed ID: 17766350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transbilayer effects of raft-like lipid domains in asymmetric planar bilayers measured by single molecule tracking.
    Kiessling V; Crane JM; Tamm LK
    Biophys J; 2006 Nov; 91(9):3313-26. PubMed ID: 16905614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry.
    Lin Q; London E
    PLoS One; 2014; 9(1):e87903. PubMed ID: 24489974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lipid composition on the topography of membrane-associated hydrophobic helices: stabilization of transmembrane topography by anionic lipids.
    Shahidullah K; London E
    J Mol Biol; 2008 Jun; 379(4):704-18. PubMed ID: 18479706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles.
    St Clair JW; London E
    Biochim Biophys Acta Biomembr; 2019 Jun; 1861(6):1112-1122. PubMed ID: 30904407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ordered Domain (Raft) Formation in Asymmetric Vesicles and Its Induction upon Loss of Lipid Asymmetry in Artificial and Natural Membranes.
    London E
    Membranes (Basel); 2022 Sep; 12(9):. PubMed ID: 36135889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha ; Sawatzki P; Kolter T; Bittman R; London E
    Biochim Biophys Acta; 2007 Sep; 1768(9):2205-12. PubMed ID: 17574203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of cyclodextrin for AFM monitoring of model raft formation.
    Giocondi MC; Milhiet PE; Dosset P; Le Grimellec C
    Biophys J; 2004 Feb; 86(2):861-9. PubMed ID: 14747321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Partitioning of liquid-ordered/liquid-disordered membrane microdomains induced by the fluidifying effect of 2-hydroxylated fatty acid derivatives.
    Ibarguren M; López DJ; Encinar JA; González-Ros JM; Busquets X; Escribá PV
    Biochim Biophys Acta; 2013 Nov; 1828(11):2553-63. PubMed ID: 23792066
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the domain line tension in asymmetric vesicles prepared via hemifusion.
    Enoki TA; Wu J; Heberle FA; Feigenson GW
    Biochim Biophys Acta Biomembr; 2021 Jun; 1863(6):183586. PubMed ID: 33647248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric bilayers mimicking membrane rafts prepared by lipid exchange: Nanoscale characterization using AFM-Force spectroscopy.
    Vázquez RF; Ovalle-García E; Antillón A; Ortega-Blake I; Bakás LS; Muñoz-Garay C; Maté SM
    Biochim Biophys Acta Biomembr; 2021 Jan; 1863(1):183467. PubMed ID: 32871116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.