BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 19129395)

  • 1. Dynamic changes in brain activity during prism adaptation.
    Luauté J; Schwartz S; Rossetti Y; Spiridon M; Rode G; Boisson D; Vuilleumier P
    J Neurosci; 2009 Jan; 29(1):169-78. PubMed ID: 19129395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms underlying spatial realignment during adaptation to optical wedge prisms.
    Chapman HL; Eramudugolla R; Gavrilescu M; Strudwick MW; Loftus A; Cunnington R; Mattingley JB
    Neuropsychologia; 2010 Jul; 48(9):2595-601. PubMed ID: 20457170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prism adaptation magnitude has differential influences on perceptual versus manual responses.
    Striemer CL; Russell K; Nath P
    Exp Brain Res; 2016 Oct; 234(10):2761-72. PubMed ID: 27206500
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prism adaptation enhances activity of intact fronto-parietal areas in both hemispheres in neglect patients.
    Saj A; Cojan Y; Vocat R; Luauté J; Vuilleumier P
    Cortex; 2013 Jan; 49(1):107-19. PubMed ID: 22154751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prism adaptation aftereffects in stroke patients with spatial neglect: pathological effects on subjective straight ahead but not visual open-loop pointing.
    Sarri M; Greenwood R; Kalra L; Papps B; Husain M; Driver J
    Neuropsychologia; 2008 Mar; 46(4):1069-80. PubMed ID: 18083203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.
    O'Shea J; Gaveau V; Kandel M; Koga K; Susami K; Prablanc C; Rossetti Y
    Neuropsychologia; 2014 Mar; 55():15-24. PubMed ID: 24056297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patients with lesions to the intraparietal cortex show greater proprioceptive realignment after prism adaptation: Evidence from open-loop pointing and manual straight ahead.
    Bultitude JH; Hollifield M; Rafal RD
    Neuropsychologia; 2021 Jul; 158():107913. PubMed ID: 34139246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.
    Küper M; Wünnemann MJ; Thürling M; Stefanescu RM; Maderwald S; Elles HG; Göricke S; Ladd ME; Timmann D
    Hum Brain Mapp; 2014 Apr; 35(4):1574-86. PubMed ID: 23568448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visuomotor adaptation in the absence of input from early visual cortex.
    Striemer CL; Enns JT; Whitwell RL
    Cortex; 2019 Jun; 115():201-215. PubMed ID: 30849551
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar cathodal tDCS interferes with recalibration and spatial realignment during prism adaptation procedure in healthy subjects.
    Panico F; Sagliano L; Grossi D; Trojano L
    Brain Cogn; 2016 Jun; 105():1-8. PubMed ID: 27031676
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulated prism exposure in immersed virtual reality produces larger prismatic after-effects than standard prism exposure in healthy subjects.
    Ramos AA; Hørning EC; Wilms IL
    PLoS One; 2019; 14(5):e0217074. PubMed ID: 31125360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct effects of prismatic lenses on visuomotor control: an event-related functional MRI study.
    Danckert J; Ferber S; Goodale MA
    Eur J Neurosci; 2008 Oct; 28(8):1696-704. PubMed ID: 18973586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prism adaptation and neck muscle vibration in healthy individuals: are two methods better than one?
    Guinet M; Michel C
    Neuroscience; 2013 Dec; 254():443-51. PubMed ID: 24035829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetrical after-effects of prism adaptation during goal oriented locomotion.
    Michel C; Vernet P; Courtine G; Ballay Y; Pozzo T
    Exp Brain Res; 2008 Feb; 185(2):259-68. PubMed ID: 17940758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural correlates of reach errors.
    Diedrichsen J; Hashambhoy Y; Rane T; Shadmehr R
    J Neurosci; 2005 Oct; 25(43):9919-31. PubMed ID: 16251440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural topography and content of movement representations.
    de Lange FP; Hagoort P; Toni I
    J Cogn Neurosci; 2005 Jan; 17(1):97-112. PubMed ID: 15701242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prism adaptation enhances decoupling between the default mode network and the attentional networks.
    Wilf M; Serino A; Clarke S; Crottaz-Herbette S
    Neuroimage; 2019 Oct; 200():210-220. PubMed ID: 31233909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Where is your shoulder? Neural correlates of localizing others' body parts.
    Felician O; Anton JL; Nazarian B; Roth M; Roll JP; Romaiguère P
    Neuropsychologia; 2009 Jul; 47(8-9):1909-16. PubMed ID: 19428423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of prism adaptation with terminal versus concurrent exposure on sensorimotor changes and spatial neglect.
    Facchin A; Bultitude JH; Mornati G; Peverelli M; Daini R
    Neuropsychol Rehabil; 2020 May; 30(4):613-640. PubMed ID: 29914300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoring abnormal aftereffects of prismatic adaptation through neuromodulation.
    Calzolari E; Bolognini N; Casati C; Marzoli SB; Vallar G
    Neuropsychologia; 2015 Jul; 74():162-9. PubMed ID: 25912762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.