BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

423 related articles for article (PubMed ID: 19129499)

  • 1. Chemical magnetoreception in birds: the radical pair mechanism.
    Rodgers CT; Hore PJ
    Proc Natl Acad Sci U S A; 2009 Jan; 106(2):353-60. PubMed ID: 19129499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical compass model of avian magnetoreception.
    Maeda K; Henbest KB; Cintolesi F; Kuprov I; Rodgers CT; Liddell PA; Gust D; Timmel CR; Hore PJ
    Nature; 2008 May; 453(7193):387-90. PubMed ID: 18449197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Radical-Pair Mechanism of Magnetoreception.
    Hore PJ; Mouritsen H
    Annu Rev Biophys; 2016 Jul; 45():299-344. PubMed ID: 27216936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model for photoreceptor-based magnetoreception in birds.
    Ritz T; Adem S; Schulten K
    Biophys J; 2000 Feb; 78(2):707-18. PubMed ID: 10653784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of exchange and dipolar interactions in the radical pair model of the avian magnetic compass.
    Efimova O; Hore PJ
    Biophys J; 2008 Mar; 94(5):1565-74. PubMed ID: 17981903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zebra finches have a light-dependent magnetic compass similar to migratory birds.
    Pinzon-Rodriguez A; Muheim R
    J Exp Biol; 2017 Apr; 220(Pt 7):1202-1209. PubMed ID: 28356366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs.
    Liedvogel M; Maeda K; Henbest K; Schleicher E; Simon T; Timmel CR; Hore PJ; Mouritsen H
    PLoS One; 2007 Oct; 2(10):e1106. PubMed ID: 17971869
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reaction kinetics and mechanism of magnetic field effects in cryptochrome.
    Solov'yov IA; Schulten K
    J Phys Chem B; 2012 Jan; 116(3):1089-99. PubMed ID: 22171949
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The quantum needle of the avian magnetic compass.
    Hiscock HG; Worster S; Kattnig DR; Steers C; Jin Y; Manolopoulos DE; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2016 Apr; 113(17):4634-9. PubMed ID: 27044102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical compass behaviour at microtesla magnetic fields strengthens the radical pair hypothesis of avian magnetoreception.
    Kerpal C; Richert S; Storey JG; Pillai S; Liddell PA; Gust D; Mackenzie SR; Hore PJ; Timmel CR
    Nat Commun; 2019 Aug; 10(1):3707. PubMed ID: 31420558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compass magnetoreception in birds arising from photo-induced radical pairs in rotationally disordered cryptochromes.
    Lau JC; Rodgers CT; Hore PJ
    J R Soc Interface; 2012 Dec; 9(77):3329-37. PubMed ID: 22977104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetoreception through cryptochrome may involve superoxide.
    Solov'yov IA; Schulten K
    Biophys J; 2009 Jun; 96(12):4804-13. PubMed ID: 19527640
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical amplification of magnetic field effects relevant to avian magnetoreception.
    Kattnig DR; Evans EW; Déjean V; Dodson CA; Wallace MI; Mackenzie SR; Timmel CR; Hore PJ
    Nat Chem; 2016 Apr; 8(4):384-91. PubMed ID: 27001735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proposal to use superparamagnetic nanoparticles to test the role of cryptochrome in magnetoreception.
    Worster SB; Hore PJ
    J R Soc Interface; 2018 Oct; 15(147):. PubMed ID: 30381345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic compass of birds is based on a molecule with optimal directional sensitivity.
    Ritz T; Wiltschko R; Hore PJ; Rodgers CT; Stapput K; Thalau P; Timmel CR; Wiltschko W
    Biophys J; 2009 Apr; 96(8):3451-7. PubMed ID: 19383488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cryptochromes--a potential magnetoreceptor: what do we know and what do we want to know?
    Liedvogel M; Mouritsen H
    J R Soc Interface; 2010 Apr; 7 Suppl 2(Suppl 2):S147-62. PubMed ID: 19906675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acuity of a cryptochrome and vision-based magnetoreception system in birds.
    Solov'yov IA; Mouritsen H; Schulten K
    Biophys J; 2010 Jul; 99(1):40-9. PubMed ID: 20655831
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alternative radical pairs for cryptochrome-based magnetoreception.
    Lee AA; Lau JC; Hogben HJ; Biskup T; Kattnig DR; Hore PJ
    J R Soc Interface; 2014 Jun; 11(95):20131063. PubMed ID: 24671932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light-dependent magnetoreception in birds: the crucial step occurs in the dark.
    Wiltschko R; Ahmad M; Nießner C; Gehring D; Wiltschko W
    J R Soc Interface; 2016 May; 13(118):. PubMed ID: 27146685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The magnetic retina: light-dependent and trigeminal magnetoreception in migratory birds.
    Mouritsen H; Hore PJ
    Curr Opin Neurobiol; 2012 Apr; 22(2):343-52. PubMed ID: 22465538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.