BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19129863)

  • 1. Viral lysis of Phaeocystis pouchetii: implications for algal population dynamics and heterotrophic C, N and P cycling.
    Haaber J; Middelboe M
    ISME J; 2009 Apr; 3(4):430-41. PubMed ID: 19129863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin.
    Bettarel Y; Amblard C; Sime-Ngando T; Carrias JF; Sargos D; Garabétian F; Lavandier P
    Microb Ecol; 2003 Feb; 45(2):119-27. PubMed ID: 12545309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters.
    Zhang R; Weinbauer MG; Qian PY
    Environ Microbiol; 2007 Dec; 9(12):3008-18. PubMed ID: 17991029
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Abundance and biomass of heterotrophic flagellates, and factors controlling their abundance and distribution in sediments of Botany Bay.
    Lee WJ; Patterson DJ
    Microb Ecol; 2002 May; 43(4):467-81. PubMed ID: 11953810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of virus-induced lysis and protozoan grazing to benthic bacterial mortality estimated simultaneously in microcosms.
    Fischer UR; Wieltschnig C; Kirschner AK; Velimirov B
    Environ Microbiol; 2006 Aug; 8(8):1394-407. PubMed ID: 16872403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grazer and virus-induced mortality of bacterioplankton accelerates development of Flectobacillus populations in a freshwater community.
    Simek K; Weinbauer MG; Hornák K; Jezbera J; Nedoma J; Dolan JR
    Environ Microbiol; 2007 Mar; 9(3):789-800. PubMed ID: 17298377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutrient recycling affects autotroph and ecosystem stoichiometry.
    Ballantyne F; Menge DN; Ostling A; Hosseini P
    Am Nat; 2008 Apr; 171(4):511-23. PubMed ID: 20374138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic and antagonistic effects of viral lysis and protistan grazing on bacterial biomass, production and diversity.
    Weinbauer MG; Hornák K; Jezbera J; Nedoma J; Dolan JR; Simek K
    Environ Microbiol; 2007 Mar; 9(3):777-88. PubMed ID: 17298376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pelagic food web patterns: do they modulate virus and nanoflagellate effects on picoplankton during the phytoplankton spring bloom?
    Ory P; Hartmann HJ; Jude F; Dupuy C; Del Amo Y; Catala P; Mornet F; Huet V; Jan B; Vincent D; Sautour B; Montanié H
    Environ Microbiol; 2010 Oct; 12(10):2755-72. PubMed ID: 20482742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can phosphorus limitation inhibit dissolved organic carbon consumption in aquatic microbial food webs? A study of three food web structures in microcosms.
    Olsen LM; Reinertsen H; Vadstein O
    Microb Ecol; 2002 Apr; 43(3):353-66. PubMed ID: 12037613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of nutrient limitation and protozoan grazing determines the phenotypic structure of a bacterial community.
    Matz C; Jürgens K
    Microb Ecol; 2003 May; 45(4):384-98. PubMed ID: 12704556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Counterintuitive carbon-to-nutrient coupling in an Arctic pelagic ecosystem.
    Thingstad TF; Bellerby RG; Bratbak G; Børsheim KY; Egge JK; Heldal M; Larsen A; Neill C; Nejstgaard J; Norland S; Sandaa RA; Skjoldal EF; Tanaka T; Thyrhaug R; Töpper B
    Nature; 2008 Sep; 455(7211):387-90. PubMed ID: 18716617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shifting nutrient-mediated interactions between algae and bacteria in a microcosm: evidence from alkaline phosphatase assay.
    Liu H; Zhou Y; Xiao W; Ji L; Cao X; Song C
    Microbiol Res; 2012 May; 167(5):292-8. PubMed ID: 22126918
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of biomass composition explains microbial growth-stoichiometry relationships.
    Franklin O; Hall EK; Kaiser C; Battin TJ; Richter A
    Am Nat; 2011 Feb; 177(2):E29-42. PubMed ID: 21460549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic phosphorus and nitrogen modify composition and diversity of microbial communities in water of mesotrophic lake.
    Chróst RJ; Adamczewski T; Kalinowska K; Skowrońska A
    Pol J Microbiol; 2009; 58(1):77-90. PubMed ID: 19469290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fate of heterotrophic bacteria in Lake Tanganyika (East Africa).
    Pirlot S; Unrein F; Descy JP; Servais P
    FEMS Microbiol Ecol; 2007 Dec; 62(3):354-64. PubMed ID: 17983442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strong, weak, and missing links in a microbial community of the N.W. Mediterranean Sea.
    Bettarel Y; Dolan JR; Hornak K; Lemée R; Masin M; Pedrotti ML; Rochelle-Newall E; Simek K; Sime-Ngando T
    FEMS Microbiol Ecol; 2002 Dec; 42(3):451-62. PubMed ID: 19709304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems.
    Elser JJ; Bracken ME; Cleland EE; Gruner DS; Harpole WS; Hillebrand H; Ngai JT; Seabloom EW; Shurin JB; Smith JE
    Ecol Lett; 2007 Dec; 10(12):1135-42. PubMed ID: 17922835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection.
    Massana R; del Campo J; Dinter C; Sommaruga R
    Environ Microbiol; 2007 Nov; 9(11):2660-9. PubMed ID: 17922751
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grazing impact of different heterotrophic nanoflagellates on eukaryotic (Ostreococcus tauri) and prokaryotic picoautotrophs (Prochlorococcus and Synechococcus).
    Christaki U; Vázquez-Domínguez E; Courties C; Lebaron P
    Environ Microbiol; 2005 Aug; 7(8):1200-10. PubMed ID: 16011757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.