These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
345 related articles for article (PubMed ID: 19130079)
1. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Sengupta S; Majumder AL Planta; 2009 Mar; 229(4):911-29. PubMed ID: 19130079 [TBL] [Abstract][Full Text] [Related]
2. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589 [TBL] [Abstract][Full Text] [Related]
3. Inositol methyl tranferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Sengupta S; Patra B; Ray S; Majumder AL Plant Cell Environ; 2008 Oct; 31(10):1442-59. PubMed ID: 18643954 [TBL] [Abstract][Full Text] [Related]
4. Expression of wild rice Porteresia coarctata PcNHX1 antiporter gene (PcNHX1) in tobacco controlled by PcNHX1 promoter (PcNHX1p) confers Na Jegadeeson V; Kumari K; Pulipati S; Parida A; Venkataraman G Plant Physiol Biochem; 2019 Jun; 139():161-170. PubMed ID: 30897507 [TBL] [Abstract][Full Text] [Related]
5. Physiology and proteome responses of two contrasting rice mutants and their wild type parent under salt stress conditions at the vegetative stage. Ghaffari A; Gharechahi J; Nakhoda B; Salekdeh GH J Plant Physiol; 2014 Jan; 171(1):31-44. PubMed ID: 24094368 [TBL] [Abstract][Full Text] [Related]
6. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
7. Porteresia coarctata (Roxb.) Tateoka, a wild rice: a potential model for studying salt-stress biology in rice. Sengupta S; Majumder AL Plant Cell Environ; 2010 Apr; 33(4):526-42. PubMed ID: 19843254 [TBL] [Abstract][Full Text] [Related]
8. A vacuolar antiporter is differentially regulated in leaves and roots of the halophytic wild rice Porteresia coarctata (Roxb.) Tateoka. Kizhakkedath P; Jegadeeson V; Venkataraman G; Parida A Mol Biol Rep; 2015 Jun; 42(6):1091-105. PubMed ID: 25481774 [TBL] [Abstract][Full Text] [Related]
9. Salt-adaptive strategies in oil seed crop Ricinus communis early seedlings (cotyledon vs. true leaf) revealed from proteomics analysis. Wang Y; Peng X; Salvato F; Wang Y; Yan X; Zhou Z; Lin J Ecotoxicol Environ Saf; 2019 Apr; 171():12-25. PubMed ID: 30593996 [TBL] [Abstract][Full Text] [Related]
10. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874 [TBL] [Abstract][Full Text] [Related]
11. Chlorophyll fluorescence analysis in diverse rice varieties reveals the positive correlation between the seedlings salt tolerance and photosynthetic efficiency. Tsai YC; Chen KC; Cheng TS; Lee C; Lin SH; Tung CW BMC Plant Biol; 2019 Sep; 19(1):403. PubMed ID: 31519149 [TBL] [Abstract][Full Text] [Related]
12. Isolation of a cDNA clone (PcSrp) encoding serine-rich-protein from Porteresia coarctata T. and its expression in yeast and finger millet (Eleusine coracana L.) affording salt tolerance. Mahalakshmi S; Christopher GS; Reddy TP; Rao KV; Reddy VD Planta; 2006 Jul; 224(2):347-59. PubMed ID: 16450172 [TBL] [Abstract][Full Text] [Related]
13. The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Fatehi F; Hosseinzadeh A; Alizadeh H; Brimavandi T; Struik PC Mol Biol Rep; 2012 May; 39(5):6387-97. PubMed ID: 22297690 [TBL] [Abstract][Full Text] [Related]
14. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice: molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. Majee M; Maitra S; Dastidar KG; Pattnaik S; Chatterjee A; Hait NC; Das KP; Majumder AL J Biol Chem; 2004 Jul; 279(27):28539-52. PubMed ID: 15016817 [TBL] [Abstract][Full Text] [Related]
15. Proteomic analysis of rice anthers under salt stress. Sarhadi E; Bazargani MM; Sajise AG; Abdolahi S; Vispo NA; Arceta M; Nejad GM; Singh RK; Salekdeh GH Plant Physiol Biochem; 2012 Sep; 58():280-7. PubMed ID: 22868211 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of salt-responsive proteins in the leaves of mangrove Kandelia candel during short-term stress. Wang L; Liu X; Liang M; Tan F; Liang W; Chen Y; Lin Y; Huang L; Xing J; Chen W PLoS One; 2014; 9(1):e83141. PubMed ID: 24416157 [TBL] [Abstract][Full Text] [Related]
17. Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. Garg R; Verma M; Agrawal S; Shankar R; Majee M; Jain M DNA Res; 2014 Feb; 21(1):69-84. PubMed ID: 24104396 [TBL] [Abstract][Full Text] [Related]
18. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188 [TBL] [Abstract][Full Text] [Related]