These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19130188)

  • 1. Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 1: comparison of uniresponse and multiresponse designs using PopDes.
    Chenel M; Bouzom F; Aarons L; Ogungbenro K
    J Pharmacokinet Pharmacodyn; 2008 Dec; 35(6):635-59. PubMed ID: 19130188
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drug-drug interaction predictions with PBPK models and optimal multiresponse sampling time designs: application to midazolam and a phase I compound. Part 2: clinical trial results.
    Chenel M; Bouzom F; Cazade F; Ogungbenro K; Aarons L; Mentré F
    J Pharmacokinet Pharmacodyn; 2008 Dec; 35(6):661-81. PubMed ID: 19130187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Semiphysiologically based pharmacokinetic models for the inhibition of midazolam clearance by diltiazem and its major metabolite.
    Zhang X; Quinney SK; Gorski JC; Jones DR; Hall SD
    Drug Metab Dispos; 2009 Aug; 37(8):1587-97. PubMed ID: 19420129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimal sampling times for a drug and its metabolite using SIMCYP(®) simulations as prior information.
    Dumont C; Mentré F; Gaynor C; Brendel K; Gesson C; Chenel M
    Clin Pharmacokinet; 2013 Jan; 52(1):43-57. PubMed ID: 23212609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologically based pharmacokinetic modeling to assess metabolic drug-drug interaction risks and inform the drug label for fedratinib.
    Wu F; Krishna G; Surapaneni S
    Cancer Chemother Pharmacol; 2020 Oct; 86(4):461-473. PubMed ID: 32886148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clarithromycin, Midazolam, and Digoxin: Application of PBPK Modeling to Gain New Insights into Drug-Drug Interactions and Co-medication Regimens.
    Moj D; Hanke N; Britz H; Frechen S; Kanacher T; Wendl T; Haefeli WE; Lehr T
    AAPS J; 2017 Jan; 19(1):298-312. PubMed ID: 27822600
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predictions of metabolic drug-drug interactions using physiologically based modelling: Two cytochrome P450 3A4 substrates coadministered with ketoconazole or verapamil.
    Perdaems N; Blasco H; Vinson C; Chenel M; Whalley S; Cazade F; Bouzom F
    Clin Pharmacokinet; 2010 Apr; 49(4):239-58. PubMed ID: 20214408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamically simulating the interaction of midazolam and the CYP3A4 inhibitor itraconazole using individual coupled whole-body physiologically-based pharmacokinetic (WB-PBPK) models.
    Vossen M; Sevestre M; Niederalt C; Jang IJ; Willmann S; Edginton AN
    Theor Biol Med Model; 2007 Mar; 4():13. PubMed ID: 17386084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiologically based predictions of the impact of inhibition of intestinal and hepatic metabolism on human pharmacokinetics of CYP3A substrates.
    Fenneteau F; Poulin P; Nekka F
    J Pharm Sci; 2010 Jan; 99(1):486-514. PubMed ID: 19479982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of a "Fit for Purpose" PBPK Model to Investigate the CYP3A4 Induction Potential of Enzalutamide.
    Narayanan R; Hoffmann M; Kumar G; Surapaneni S
    Drug Metab Lett; 2016; 10(3):172-179. PubMed ID: 27604990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiologically based pharmacokinetic modeling to predict complex drug-drug interactions: a case study of AZD2327 and its metabolite, competitive and time-dependent CYP3A inhibitors.
    Guo J; Zhou D; Li Y; Khanh BH
    Biopharm Drug Dispos; 2015 Nov; 36(8):507-19. PubMed ID: 26081137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Pharmacokinetic and CYP3A Drug-Drug Interaction Prediction of GDC-2394 Using Physiologically Based Pharmacokinetic Modeling and Biomarker Assessment.
    Yu J; Tang F; Ma F; Wong S; Wang J; Ly J; Chen L; Mao J
    Drug Metab Dispos; 2024 Jul; 52(8):765-774. PubMed ID: 38811156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Bayesian meta-analysis on published sample mean and variance pharmacokinetic data with application to drug-drug interaction prediction.
    Yu M; Kim S; Wang Z; Hall S; Li L
    J Biopharm Stat; 2008; 18(6):1063-83. PubMed ID: 18991108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Critical Impact of Drug-Drug Interactions via Intestinal CYP3A in the Risk Assessment of Weak Perpetrators Using Physiologically Based Pharmacokinetic Models.
    Yamada M; Inoue SI; Sugiyama D; Nishiya Y; Ishizuka T; Watanabe A; Watanabe K; Yamashita S; Watanabe N
    Drug Metab Dispos; 2020 Apr; 48(4):288-296. PubMed ID: 31996361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Midazolam Limited Sampling Strategy With a Population Pharmacokinetic Approach to Simultaneously Estimate Cytochrome P450 (CYP) 3A Constitutive, Inhibition, and Induction/Activation Conditions in Healthy Adults.
    Yang J; Nikanjam M; Capparelli EV; Tsunoda SM; Greenberg HE; Penzak SR; Stoch SA; Bertino JS; Nafziger AN; Ma JD
    J Clin Pharmacol; 2019 Nov; 59(11):1495-1504. PubMed ID: 31051051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stochastic prediction of CYP3A-mediated inhibition of midazolam clearance by ketoconazole.
    Chien JY; Lucksiri A; Ernest CS; Gorski JC; Wrighton SA; Hall SD
    Drug Metab Dispos; 2006 Jul; 34(7):1208-19. PubMed ID: 16611859
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiologically-based pharmacokinetic modelling to predict oprozomib CYP3A drug-drug interaction potential in patients with advanced malignancies.
    Ou Y; Xu Y; Gore L; Harvey RD; Mita A; Papadopoulos KP; Wang Z; Cutler RE; Pinchasik DE; Tsimberidou AM
    Br J Clin Pharmacol; 2019 Mar; 85(3):530-539. PubMed ID: 30428505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the Potential for Drug-Drug Interactions with Inhaled Itraconazole Using Physiologically Based Pharmacokinetic Modelling, Based on Phase 1 Clinical Data.
    Bergagnini-Kolev M; Kane K; Templeton IE; Curran AK
    AAPS J; 2023 Jun; 25(4):62. PubMed ID: 37344751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo CYP3A4 activity does not predict the magnitude of interaction between itraconazole and tacrolimus from an extended release formulation.
    Vanhove T; Annaert P; Knops N; de Loor H; de Hoon J; Kuypers DRJ
    Basic Clin Pharmacol Toxicol; 2019 Jan; 124(1):50-55. PubMed ID: 29989304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physiologically Based Pharmacokinetic Model Predictions of Panobinostat (LBH589) as a Victim and Perpetrator of Drug-Drug Interactions.
    Einolf HJ; Lin W; Won CS; Wang L; Gu H; Chun DY; He H; Mangold JB
    Drug Metab Dispos; 2017 Dec; 45(12):1304-1316. PubMed ID: 28912253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.