These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
842 related articles for article (PubMed ID: 19130446)
1. Nano-supramolecular assemblies constructed from water-soluble bis(calix[5]arenes) with porphyrins and their photoinduced electron transfer properties. Guo DS; Chen K; Zhang HQ; Liu Y Chem Asian J; 2009 Mar; 4(3):436-45. PubMed ID: 19130446 [TBL] [Abstract][Full Text] [Related]
2. Energies of charge transfer and supramolecular interactions of some mono O-substituted calix[6]arenes with [60]fullerene by absorption spectrometric method. Bhattacharya S; Nayak SK; Semwal A; Banerjee M Spectrochim Acta A Mol Biomol Spectrosc; 2005 Feb; 61(4):595-606. PubMed ID: 15649789 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular architectures by fullerene-bridged bis(permethyl-beta-cyclodextrin)s with porphyrins. Zhang YM; Chen Y; Yang Y; Liu P; Liu Y Chemistry; 2009 Oct; 15(42):11333-40. PubMed ID: 19760728 [TBL] [Abstract][Full Text] [Related]
4. Porphyrin light-harvesting arrays constructed in the recombinant tobacco mosaic virus scaffold. Endo M; Fujitsuka M; Majima T Chemistry; 2007; 13(31):8660-6. PubMed ID: 17849494 [TBL] [Abstract][Full Text] [Related]
5. Noncovalent synthesis in aqueous solution and spectroscopic characterization of multi-porphyrin complexes. Gulino FG; Lauceri R; Frish L; Evan-Salem T; Cohen Y; De Zorzi R; Geremia S; Di Costanzo L; Randaccio L; Sciotto D; Purrello R Chemistry; 2006 Mar; 12(10):2722-9. PubMed ID: 16416494 [TBL] [Abstract][Full Text] [Related]
6. Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. Haino T; Matsumoto Y; Fukazawa Y J Am Chem Soc; 2005 Jun; 127(25):8936-7. PubMed ID: 15969555 [TBL] [Abstract][Full Text] [Related]
7. A general method for constructing optically active supramolecular assemblies from intrinsically achiral water-insoluble free-base porphyrins. Zhang Y; Chen P; Liu M Chemistry; 2008; 14(6):1793-803. PubMed ID: 18064623 [TBL] [Abstract][Full Text] [Related]
8. Calix[4]arene-linked bisporphyrin hosts for fullerenes: binding strength, solvation effects, and porphyrin-fullerene charge transfer bands. Hosseini A; Taylor S; Accorsi G; Armaroli N; Reed CA; Boyd PD J Am Chem Soc; 2006 Dec; 128(49):15903-13. PubMed ID: 17147403 [TBL] [Abstract][Full Text] [Related]
9. Supramolecular triad and pentad composed of zinc-porphyrin(s), oxoporphyrinogen, and fullerene(s): design and electron-transfer studies. Schumacher AL; Sandanayaka AS; Hill JP; Ariga K; Karr PA; Araki Y; Ito O; D'Souza F Chemistry; 2007; 13(16):4628-35. PubMed ID: 17385764 [TBL] [Abstract][Full Text] [Related]
10. The solubilization of the poorly water soluble drug nifedipine by water soluble 4-sulphonic calix[n]arenes. Yang W; de Villiers MM Eur J Pharm Biopharm; 2004 Nov; 58(3):629-36. PubMed ID: 15451538 [TBL] [Abstract][Full Text] [Related]
11. Supramolecular interactions of [60]- and [70]fullerenes with calix[n]arenes. Bhattacharya S; Nayak SK; Chattopadhyay S; Banerjee M; Mukherjee AK Spectrochim Acta A Mol Biomol Spectrosc; 2005 Jan; 61(1-2):321-9. PubMed ID: 15556456 [TBL] [Abstract][Full Text] [Related]
12. Molecular energy and electron transfer assemblies made of self-organized lipid-porphyrin bilayer vesicles. Komatsu T; Moritake M; Tsuchida E Chemistry; 2003 Oct; 9(19):4626-33. PubMed ID: 14566867 [TBL] [Abstract][Full Text] [Related]
13. Synthesis and binding properties of carboxylphenyl-modified calix[4]arenes and cytochrome c. An WT; Jiao Y; Sun XH; Zhang XL; Dong C; Shuang SM; Xia PF; Wong MS Talanta; 2009 Jun; 79(1):54-61. PubMed ID: 19376343 [TBL] [Abstract][Full Text] [Related]
14. Selective inclusion of electron-donating molecules into porphyrin nanochannels derived from the self-assembly of saddle-distorted, protonated porphyrins and photoinduced electron transfer from guest molecules to porphyrin dications. Kojima T; Nakanishi T; Harada R; Ohkubo K; Yamauchi S; Fukuzumi S Chemistry; 2007; 13(31):8714-25. PubMed ID: 17665374 [TBL] [Abstract][Full Text] [Related]
15. Photophysical properties and photoinduced electron transfer within host-guest complexes of 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin with water-soluble calixarenes and cyclodextrins. Lang K; Kubát P; Lhoták P; Mosinger J; Wagnerová DM Photochem Photobiol; 2001 Oct; 74(4):558-65. PubMed ID: 11683035 [TBL] [Abstract][Full Text] [Related]
16. Phenyl-calix[4]arene-based fluorescent sensors: cooperative binding for carboxylates. Sun XH; Li W; Xia PF; Luo HB; Wei Y; Wong MS; Cheng YK; Shuang S J Org Chem; 2007 Mar; 72(7):2419-26. PubMed ID: 17343417 [TBL] [Abstract][Full Text] [Related]
17. Rigidity and/or flexibility of calixarenes. effect of the p-sulfonatocalix[n]arenes (n = 4, 6, and 8) on the electron transfer process [Ru(NH3)5pz]2+ + Co(C2O4)3(3-). Sanchez A; Jiménez R; Ternero F; Mesa R; Piñero CA; Muriel F; Lopez-Cornejo P J Phys Chem B; 2007 Sep; 111(36):10697-702. PubMed ID: 17713942 [TBL] [Abstract][Full Text] [Related]
18. Nanoporous crystals of calixarene/porphyrin supramolecular complex functionalized by diffusion and coordination of metal ions. De Zorzi R; Guidolin N; Randaccio L; Purrello R; Geremia S J Am Chem Soc; 2009 Feb; 131(7):2487-9. PubMed ID: 19187023 [TBL] [Abstract][Full Text] [Related]
19. Face-to-face pacman-type porphyrin-fullerene dyads: design, synthesis, charge-transfer interactions, and photophysical studies. D'Souza F; Maligaspe E; Karr PA; Schumacher AL; El Ojaimi M; Gros CP; Barbe JM; Ohkubo K; Fukuzumi S Chemistry; 2008; 14(2):674-81. PubMed ID: 17924593 [TBL] [Abstract][Full Text] [Related]
20. Switching the photoinduced processes in host-guest complexes of β-cyclodextrin-substituted silicon(IV) phthalocyanines and a tetrasulfonated porphyrin. Ermilov EA; Menting R; Lau JT; Leng X; Röder B; Ng DK Phys Chem Chem Phys; 2011 Oct; 13(39):17633-41. PubMed ID: 21887428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]