These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19130568)

  • 1. A nanochannel-based concentrator utilizing the concentration polarization effect.
    Huang KD; Yang RJ
    Electrophoresis; 2008 Dec; 29(24):4862-70. PubMed ID: 19130568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell.
    Liu S; Pu Q; Gao L; Korzeniewski C; Matzke C
    Nano Lett; 2005 Jul; 5(7):1389-93. PubMed ID: 16178244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuneable nanochannel formation for sample-in/answer-out devices.
    Shallan AI; Gaudry AJ; Guijt RM; Breadmore MC
    Chem Commun (Camb); 2013 Apr; 49(27):2816-8. PubMed ID: 23443891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun light-emitting nanofibers as excitation source in microfluidic devices.
    Pagliara S; Camposeo A; Polini A; Cingolani R; Pisignano D
    Lab Chip; 2009 Oct; 9(19):2851-6. PubMed ID: 19967124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ion concentration polarization near microchannel-nanochannel interfaces: effect of pH value.
    Chang CC; Yeh CP; Yang RJ
    Electrophoresis; 2012 Mar; 33(5):758-64. PubMed ID: 22522532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic device for dielectrophoresis manipulation and electrodisruption of respiratory pathogen Bordetella pertussis.
    de la Rosa C; Tilley PA; Fox JD; Kaler KV
    IEEE Trans Biomed Eng; 2008 Oct; 55(10):2426-32. PubMed ID: 18838368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technologies for nanofluidic systems: top-down vs. bottom-up--a review.
    Mijatovic D; Eijkel JC; van den Berg A
    Lab Chip; 2005 May; 5(5):492-500. PubMed ID: 15856084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic stickers for cell- and tissue-based assays in microchannels.
    Morel M; Bartolo D; Galas JC; Dahan M; Studer V
    Lab Chip; 2009 Apr; 9(7):1011-3. PubMed ID: 19294316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrokinetic instability effects in microchannels with and without nanofilm coatings.
    Fu LM; Hong TF; Wen CY; Tsai CH; Lin CH
    Electrophoresis; 2008 Dec; 29(24):4871-9. PubMed ID: 19130549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optically induced dielectropheresis sorting with automated medium exchange in an integrated optofluidic device resulting in higher cell viability.
    Lee GB; Wu HC; Yang PF; Mai JD
    Lab Chip; 2014 Aug; 14(15):2837-43. PubMed ID: 24911448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromachining of Polymeric Microfluidic Micro/Nanoelectroporation Device.
    Li L
    Methods Mol Biol; 2020; 2050():21-27. PubMed ID: 31468476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic capture and release of bacteria in a conical nanopore array.
    Guo P; Hall EW; Schirhagl R; Mukaibo H; Martin CR; Zare RN
    Lab Chip; 2012 Feb; 12(3):558-61. PubMed ID: 22170441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micromixer utilizing electrokinetic instability-induced shedding effect.
    Tai CH; Yang RJ; Huang MZ; Liu CW; Tsai CH; Fu LM
    Electrophoresis; 2006 Dec; 27(24):4982-90. PubMed ID: 17109376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT; Bottausci F; Rao MP; Parker ER; Mezic I; Macdonald NC
    Biomed Microdevices; 2008 Aug; 10(4):509-17. PubMed ID: 18214682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunoassays in microfluidic systems.
    Ng AH; Uddayasankar U; Wheeler AR
    Anal Bioanal Chem; 2010 Jun; 397(3):991-1007. PubMed ID: 20422163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing protease activity assay in droplet-based microfluidics using a biomolecule concentrator.
    Chen CH; Sarkar A; Song YA; Miller MA; Kim SJ; Griffith LG; Lauffenburger DA; Han J
    J Am Chem Soc; 2011 Jul; 133(27):10368-71. PubMed ID: 21671557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of molecular diffusion of rhodamine 6G in silica nanochannels.
    Kievsky YY; Carey B; Naik S; Mangan N; ben-Avraham D; Sokolov I
    J Chem Phys; 2008 Apr; 128(15):151102. PubMed ID: 18433183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. When microfluidic devices go bad. How does fouling occur in microfluidic devices, and what can be done about it?
    Mukhopadhyay R
    Anal Chem; 2005 Nov; 77(21):429A-432A. PubMed ID: 16285143
    [No Abstract]   [Full Text] [Related]  

  • 19. A simple, disposable microfluidic device for rapid protein concentration and purification via direct-printing.
    Yu H; Lu Y; Zhou YG; Wang FB; He FY; Xia XH
    Lab Chip; 2008 Sep; 8(9):1496-501. PubMed ID: 18818804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An investigation of the effects of inlet channel geometry on electrokinetic instabilities.
    Pan YJ; Yang RJ
    Biomed Microdevices; 2009 Feb; 11(1):9-16. PubMed ID: 18819007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.