These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 19131168)

  • 1. A quantitative assessment of microelectrodes.
    Schlesiger R; Schmitz G
    Ultramicroscopy; 2009 Apr; 109(5):497-501. PubMed ID: 19131168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and fabrication of a polyimide-based microelectrode array: application in neural recording and repeatable electrolytic lesion in rat brain.
    Chen YY; Lai HY; Lin SH; Cho CW; Chao WH; Liao CH; Tsang S; Chen YF; Lin SY
    J Neurosci Methods; 2009 Aug; 182(1):6-16. PubMed ID: 19467262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Invariance of exocytotic events detected by amperometry as a function of the carbon fiber microelectrode diameter.
    Amatore C; Arbault S; Bouret Y; Guille M; Lemaître F; Verchier Y
    Anal Chem; 2009 Apr; 81(8):3087-93. PubMed ID: 19290664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward a comparison of microelectrodes for acute and chronic recordings.
    Ward MP; Rajdev P; Ellison C; Irazoqui PP
    Brain Res; 2009 Jul; 1282():183-200. PubMed ID: 19486899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of atom probe specimen preparation techniques for specific regions in steel materials.
    Takahashi J; Kawakami K; Yamaguchi Y; Sugiyama M
    Ultramicroscopy; 2007 Sep; 107(9):744-9. PubMed ID: 17391850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liposome rupture and contents release over coplanar microelectrode arrays.
    Lim JK; Zhou H; Tilton RD
    J Colloid Interface Sci; 2009 Apr; 332(1):113-21. PubMed ID: 19136117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative comparison of energy-filtering transmission electron microscopy and atom probe tomography.
    Stender P; Heil T; Kohl H; Schmitz G
    Ultramicroscopy; 2009 Apr; 109(5):612-8. PubMed ID: 19201097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and testing of polyimide-based microelectrode arrays for cortical mapping of evoked potentials.
    Myllymaa S; Myllymaa K; Korhonen H; Töyräs J; Jääskeläinen JE; Djupsund K; Tanila H; Lappalainen R
    Biosens Bioelectron; 2009 Jun; 24(10):3067-72. PubMed ID: 19380223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Risk factors for hemorrhage during microelectrode-guided deep brain stimulation and the introduction of an improved microelectrode design.
    Ben-Haim S; Asaad WF; Gale JT; Eskandar EN
    Neurosurgery; 2009 Apr; 64(4):754-62; discussion 762-3. PubMed ID: 19349834
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo electrical impedance spectroscopy of tissue reaction to microelectrode arrays.
    Mercanzini A; Colin P; Bensadoun JC; Bertsch A; Renaud P
    IEEE Trans Biomed Eng; 2009 Jul; 56(7):1909-18. PubMed ID: 19362904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microelectronic system for high-resolution mapping of extracellular electric fields applied to brain slices.
    Frey U; Egert U; Heer F; Hafizovic S; Hierlemann A
    Biosens Bioelectron; 2009 Mar; 24(7):2191-8. PubMed ID: 19157842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A modelling study to inform specification and optimal electrode placement for imaging of neuronal depolarization during visual evoked responses by electrical and magnetic detection impedance tomography.
    Gilad O; Horesh L; Holder DS
    Physiol Meas; 2009 Jun; 30(6):S201-24. PubMed ID: 19491442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the sound insulation of single leaf walls: extension of Cremer's model.
    Davy JL
    J Acoust Soc Am; 2009 Oct; 126(4):1871-7. PubMed ID: 19813801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytic ab initio calculations of coherent anti-Stokes Raman scattering (CARS).
    Thorvaldsen AJ; Ferrighi L; Ruud K; Agren H; Coriani S; Jørgensen P
    Phys Chem Chem Phys; 2009 Apr; 11(13):2293-304. PubMed ID: 19305904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of a microelectrode on a substrate.
    Rahman S; Sahin M
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():4157-9. PubMed ID: 17271217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanolithography based on an atom pinhole camera.
    Melentiev PN; Zablotskiy AV; Lapshin DA; Sheshin EP; Baturin AS; Balykin VI
    Nanotechnology; 2009 Jun; 20(23):235301. PubMed ID: 19448292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary and secondary bonds in field induced aggregation of electric double layered magnetic particles.
    Martínez-Pedrero F; Tirado-Miranda M; Schmitt A; Callejas-Fernández J
    Langmuir; 2009 Jun; 25(12):6658-64. PubMed ID: 19453108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new approach for explanation of specimen rupture under high electric field.
    Mikhailovskij IM; Wanderka N; Storizhko VE; Ksenofontov VA; Mazilova TI
    Ultramicroscopy; 2009 Apr; 109(5):480-5. PubMed ID: 19171432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.