These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 19131267)

  • 1. Finite element analysis of stresses developed in the blood sac of a left ventricular assist device.
    Haut Donahue TL; Dehlin W; Gillespie J; Weiss WJ; Rosenberg G
    Med Eng Phys; 2009 May; 31(4):454-60. PubMed ID: 19131267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analysis of stresses developed in blood sacs of a pusherplate blood pump.
    Donahue TL; Rosenberg G; Jacobs CR; Weiss WJ
    Comput Methods Biomech Biomed Engin; 2003 Feb; 6(1):7-15. PubMed ID: 12623433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Right Ventricle Failure After Continuous Flow Left Ventricular Assist Device: A Biventricular Finite-Element and Lumped-Parameter Analysis.
    Scardulla F; Agnese V; Romano G; Di Gesaro G; Sciacca S; Bellavia D; Clemenza F; Pilato M; Pasta S
    Cardiovasc Eng Technol; 2018 Sep; 9(3):427-437. PubMed ID: 29700783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling and simulation of blood flow in a sac-type left ventricular assist device.
    Najarian S; Firouzi F; Fatouraee N; Dargahi J
    Biomed Mater Eng; 2007; 17(4):229-33. PubMed ID: 17611298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Implementation and validation of finite element model of skull deformation and failure response during uniaxial compression.
    Alexander SL; Weerasooriya T
    J Mech Behav Biomed Mater; 2021 Mar; 115():104302. PubMed ID: 33476873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of computational model for assessment of heart tissue local stress caused by suture in LVAD implantation.
    Chalon A; Favre J; Piotrowski B; Landmann V; Grandmougin D; Maureira JP; Laheurte P; Tran N
    J Mech Behav Biomed Mater; 2018 Jun; 82():291-298. PubMed ID: 29649657
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Frank-starling control of a left ventricular assist device.
    Stevens MC; Gaddum NR; Pearcy M; Salamonsen RF; Timms DL; Mason DG; Fraser JF
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1335-8. PubMed ID: 22254563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow simulation of a diaphragm-type ventricular assist device with structural interactions.
    Moosavi MH; Fatouraee N
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1027-30. PubMed ID: 18002135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A sophisticated electromechanical ventricular simulator for ventricular assist system testing.
    Woodard JC; Rock SM; Portner PM
    ASAIO Trans; 1991; 37(3):M210-1. PubMed ID: 1751115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of heart failure and left ventricular assist device treatment on right ventricular mechanics: a computational study.
    Park JIK; Heikhmakhtiar AK; Kim CH; Kim YS; Choi SW; Song KS; Lim KM
    Biomed Eng Online; 2018 May; 17(1):62. PubMed ID: 29784052
    [TBL] [Abstract][Full Text] [Related]  

  • 11. PIV measurements of flow in a centrifugal blood pump: steady flow.
    Day SW; McDaniel JC
    J Biomech Eng; 2005 Apr; 127(2):244-53. PubMed ID: 15971702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear-slip Mesh Update Method: implementation and applications.
    Behr M; Arora D
    Comput Methods Biomech Biomed Engin; 2003 Apr; 6(2):113-23. PubMed ID: 12745425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of ventricular assist devices (POLVAD and POLVAD_EXT) based on multiscale FEM model.
    Milenin A; Kopernik M
    Acta Bioeng Biomech; 2011; 13(2):13-23. PubMed ID: 21761807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal and pathological NCAT image and phantom data based on physiologically realistic left ventricle finite-element models.
    Veress AI; Segars WP; Weiss JA; Tsui BM; Gullberg GT
    IEEE Trans Med Imaging; 2006 Dec; 25(12):1604-16. PubMed ID: 17167995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain analysis of flexing blood pump diaphragms.
    Kesavan SK; Yazdani SA
    J Appl Biomater; 1992; 3(4):305-11. PubMed ID: 10147999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametrization of an in-silico circulatory simulation by clinical datasets - towards prediction of ventricular function following assist device implantation.
    Moza A; Gesenhues J; Autschbach R; Abel D; Rossaint R; Schmitz-Rode T; Goetzenich A
    Biomed Tech (Berl); 2017 Apr; 62(2):123-130. PubMed ID: 28259865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PIV measurements of flow in a centrifugal blood pump: time-varying flow.
    Day SW; McDaniel JC
    J Biomech Eng; 2005 Apr; 127(2):254-63. PubMed ID: 15971703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of Reynolds stresses within the Penn State left ventricular assist device.
    Baldwin JT; Deutsch S; Geselowitz DB; Tarbell JM
    ASAIO Trans; 1990; 36(3):M274-8. PubMed ID: 2252676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.