These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
549 related articles for article (PubMed ID: 19131358)
1. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza. Tada Y; Kashimura T Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358 [TBL] [Abstract][Full Text] [Related]
2. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam. Zhu Z; Chen J; Zheng HL Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256 [TBL] [Abstract][Full Text] [Related]
3. Proteome analysis of tobacco leaves under salt stress. Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening. Yamanaka T; Miyama M; Tada Y Biosci Biotechnol Biochem; 2009 Feb; 73(2):304-10. PubMed ID: 19202291 [TBL] [Abstract][Full Text] [Related]
5. Proteomic analysis of cucumber seedling roots subjected to salt stress. Du CX; Fan HF; Guo SR; Tezuka T; Li J Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043 [TBL] [Abstract][Full Text] [Related]
6. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1. Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721 [TBL] [Abstract][Full Text] [Related]
7. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Wang X; Fan P; Song H; Chen X; Li X; Li Y J Proteome Res; 2009 Jul; 8(7):3331-45. PubMed ID: 19445527 [TBL] [Abstract][Full Text] [Related]
8. New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Cheng Y; Qi Y; Zhu Q; Chen X; Wang N; Zhao X; Chen H; Cui X; Xu L; Zhang W Proteomics; 2009 Jun; 9(11):3100-14. PubMed ID: 19526560 [TBL] [Abstract][Full Text] [Related]
9. Comparative proteomic analysis of canola leaves under salinity stress. Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525 [TBL] [Abstract][Full Text] [Related]
10. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots. Chitteti BR; Peng Z J Proteome Res; 2007 May; 6(5):1718-27. PubMed ID: 17385905 [TBL] [Abstract][Full Text] [Related]
11. Proteome analysis of soybean hypocotyl and root under salt stress. Aghaei K; Ehsanpour AA; Shah AH; Komatsu S Amino Acids; 2009 Jan; 36(1):91-8. PubMed ID: 18264660 [TBL] [Abstract][Full Text] [Related]
12. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188 [TBL] [Abstract][Full Text] [Related]
13. Differentially delayed root proteome responses to salt stress in sugar cane varieties. Pacheco CM; Pestana-Calsa MC; Gozzo FC; Mansur Custodio Nogueira RJ; Menossi M; Calsa T J Proteome Res; 2013 Dec; 12(12):5681-95. PubMed ID: 24251627 [TBL] [Abstract][Full Text] [Related]
14. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Kim DW; Rakwal R; Agrawal GK; Jung YH; Shibato J; Jwa NS; Iwahashi Y; Iwahashi H; Kim DH; Shim IeS; Usui K Electrophoresis; 2005 Dec; 26(23):4521-39. PubMed ID: 16315177 [TBL] [Abstract][Full Text] [Related]
15. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora. Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589 [TBL] [Abstract][Full Text] [Related]
16. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Liu CW; Hsu YK; Cheng YH; Yen HC; Wu YP; Wang CS; Lai CC Rapid Commun Mass Spectrom; 2012 Aug; 26(15):1649-60. PubMed ID: 22730086 [TBL] [Abstract][Full Text] [Related]
17. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes. Kottapalli KR; Rakwal R; Shibato J; Burow G; Tissue D; Burke J; Puppala N; Burow M; Payton P Plant Cell Environ; 2009 Apr; 32(4):380-407. PubMed ID: 19143990 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14. Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the poplar phloem proteome and its response to leaf wounding. Dafoe NJ; Zamani A; Ekramoddoullah AK; Lippert D; Bohlmann J; Constabel CP J Proteome Res; 2009 May; 8(5):2341-50. PubMed ID: 19245218 [TBL] [Abstract][Full Text] [Related]
20. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Zhu JQ; Zhang JT; Tang RJ; Lv QD; Wang QQ; Yang L; Zhang HX Physiol Plant; 2009 Aug; 136(4):407-25. PubMed ID: 19470090 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]