BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

551 related articles for article (PubMed ID: 19131358)

  • 1. Proteomic analysis of salt-responsive proteins in the mangrove plant, Bruguiera gymnorhiza.
    Tada Y; Kashimura T
    Plant Cell Physiol; 2009 Mar; 50(3):439-46. PubMed ID: 19131358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and proteomic characterization of salt tolerance in a mangrove plant, Bruguiera gymnorrhiza (L.) Lam.
    Zhu Z; Chen J; Zheng HL
    Tree Physiol; 2012 Nov; 32(11):1378-88. PubMed ID: 23100256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome analysis of tobacco leaves under salt stress.
    Razavizadeh R; Ehsanpour AA; Ahsan N; Komatsu S
    Peptides; 2009 Sep; 30(9):1651-9. PubMed ID: 19573571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptome profiling of the mangrove plant Bruguiera gymnorhiza and identification of salt tolerance genes by Agrobacterium functional screening.
    Yamanaka T; Miyama M; Tada Y
    Biosci Biotechnol Biochem; 2009 Feb; 73(2):304-10. PubMed ID: 19202291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of cucumber seedling roots subjected to salt stress.
    Du CX; Fan HF; Guo SR; Tezuka T; Li J
    Phytochemistry; 2010 Sep; 71(13):1450-9. PubMed ID: 20580043
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative proteome analyses of maize (Zea mays L.) primary roots prior to lateral root initiation reveal differential protein expression in the lateral root initiation mutant rum1.
    Liu Y; Lamkemeyer T; Jakob A; Mi G; Zhang F; Nordheim A; Hochholdinger F
    Proteomics; 2006 Aug; 6(15):4300-8. PubMed ID: 16819721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity.
    Wang X; Fan P; Song H; Chen X; Li X; Li Y
    J Proteome Res; 2009 Jul; 8(7):3331-45. PubMed ID: 19445527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New changes in the plasma-membrane-associated proteome of rice roots under salt stress.
    Cheng Y; Qi Y; Zhu Q; Chen X; Wang N; Zhao X; Chen H; Cui X; Xu L; Zhang W
    Proteomics; 2009 Jun; 9(11):3100-14. PubMed ID: 19526560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative proteomic analysis of canola leaves under salinity stress.
    Bandehagh A; Salekdeh GH; Toorchi M; Mohammadi A; Komatsu S
    Proteomics; 2011 May; 11(10):1965-75. PubMed ID: 21480525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteome and phosphoproteome differential expression under salinity stress in rice (Oryza sativa) roots.
    Chitteti BR; Peng Z
    J Proteome Res; 2007 May; 6(5):1718-27. PubMed ID: 17385905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteome analysis of soybean hypocotyl and root under salt stress.
    Aghaei K; Ehsanpour AA; Shah AH; Komatsu S
    Amino Acids; 2009 Jan; 36(1):91-8. PubMed ID: 18264660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila.
    Pang Q; Chen S; Dai S; Chen Y; Wang Y; Yan X
    J Proteome Res; 2010 May; 9(5):2584-99. PubMed ID: 20377188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentially delayed root proteome responses to salt stress in sugar cane varieties.
    Pacheco CM; Pestana-Calsa MC; Gozzo FC; Mansur Custodio Nogueira RJ; Menossi M; Calsa T
    J Proteome Res; 2013 Dec; 12(12):5681-95. PubMed ID: 24251627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf.
    Kim DW; Rakwal R; Agrawal GK; Jung YH; Shibato J; Jwa NS; Iwahashi Y; Iwahashi H; Kim DH; Shim IeS; Usui K
    Electrophoresis; 2005 Dec; 26(23):4521-39. PubMed ID: 16315177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and proteomic analysis of salinity tolerance in Puccinellia tenuiflora.
    Yu J; Chen S; Zhao Q; Wang T; Yang C; Diaz C; Sun G; Dai S
    J Proteome Res; 2011 Sep; 10(9):3852-70. PubMed ID: 21732589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots.
    Liu CW; Hsu YK; Cheng YH; Yen HC; Wu YP; Wang CS; Lai CC
    Rapid Commun Mass Spectrom; 2012 Aug; 26(15):1649-60. PubMed ID: 22730086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology and proteomics of the water-deficit stress response in three contrasting peanut genotypes.
    Kottapalli KR; Rakwal R; Shibato J; Burow G; Tissue D; Burke J; Puppala N; Burow M; Payton P
    Plant Cell Environ; 2009 Apr; 32(4):380-407. PubMed ID: 19143990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic analysis of salt tolerance in sugar beet monosomic addition line M14.
    Yang L; Zhang Y; Zhu N; Koh J; Ma C; Pan Y; Yu B; Chen S; Li H
    J Proteome Res; 2013 Nov; 12(11):4931-50. PubMed ID: 23799291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the poplar phloem proteome and its response to leaf wounding.
    Dafoe NJ; Zamani A; Ekramoddoullah AK; Lippert D; Bohlmann J; Constabel CP
    J Proteome Res; 2009 May; 8(5):2341-50. PubMed ID: 19245218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus.
    Zhu JQ; Zhang JT; Tang RJ; Lv QD; Wang QQ; Yang L; Zhang HX
    Physiol Plant; 2009 Aug; 136(4):407-25. PubMed ID: 19470090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.