These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
97 related articles for article (PubMed ID: 19131491)
1. Interpreting the phosphocreatine time constant in aerobically exercising skeletal muscle. Kemp G J Appl Physiol (1985); 2009 Jan; 106(1):350; author reply 351. PubMed ID: 19131491 [No Abstract] [Full Text] [Related]
2. Regulation of oxidative phosphorylation in different muscles and various experimental conditions. Korzeniewski B Biochem J; 2003 Nov; 375(Pt 3):799-804. PubMed ID: 12901719 [TBL] [Abstract][Full Text] [Related]
3. Acidosis inhibits oxidative phosphorylation in contracting human skeletal muscle in vivo. Jubrias SA; Crowther GJ; Shankland EG; Gronka RK; Conley KE J Physiol; 2003 Dec; 553(Pt 2):589-99. PubMed ID: 14514869 [TBL] [Abstract][Full Text] [Related]
4. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study. Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696 [TBL] [Abstract][Full Text] [Related]
5. Muscle phosphocreatine kinetics in children and adults at the onset and offset of moderate-intensity exercise. Barker AR; Welsman JR; Fulford J; Welford D; Armstrong N J Appl Physiol (1985); 2008 Aug; 105(2):446-56. PubMed ID: 18499782 [TBL] [Abstract][Full Text] [Related]
6. O2 and respiration in exercising human muscle. The regulation of oxidative phosphorylation in vivo. Jue T; Chung Y; Mole P; Tran TK; Kreutzer U; Sailasuta N; Hurd R Adv Exp Med Biol; 2000; 475():769-83. PubMed ID: 10849719 [No Abstract] [Full Text] [Related]
7. Mitochondrial respiration in creatine-loaded muscle: is there 31P-MRS evidence of direct effects of phosphocreatine and creatine in vivo? Kemp G J Appl Physiol (1985); 2006 Apr; 100(4):1428-9; author reply 1429-30. PubMed ID: 16540719 [No Abstract] [Full Text] [Related]
8. Bioenergetic approach to transfer function of human skeletal muscle. Binzoni T; Cerretelli P J Appl Physiol (1985); 1994 Oct; 77(4):1784-9. PubMed ID: 7836200 [TBL] [Abstract][Full Text] [Related]
9. Influence of dietary creatine supplementation on muscle phosphocreatine kinetics during knee-extensor exercise in humans. Jones AM; Wilkerson DP; Fulford J Am J Physiol Regul Integr Comp Physiol; 2009 Apr; 296(4):R1078-87. PubMed ID: 19211722 [TBL] [Abstract][Full Text] [Related]
10. Some factors determining the PCr recovery overshoot in skeletal muscle. Korzeniewski B; Zoladz JA Biophys Chem; 2005 Jul; 116(2):129-36. PubMed ID: 15950825 [TBL] [Abstract][Full Text] [Related]
12. Changes in potential controllers of human skeletal muscle respiration during incremental calf exercise. Barstow TJ; Buchthal SD; Zanconato S; Cooper DM J Appl Physiol (1985); 1994 Nov; 77(5):2169-76. PubMed ID: 7868430 [TBL] [Abstract][Full Text] [Related]
13. Regulation of oxidative and glycogenolytic ATP turnover in exercising rat skeletal muscle. Sanderson AL; Kemp GJ; Thompson CH; Radda GK Biochem Soc Trans; 1995 May; 23(2):292S. PubMed ID: 7672319 [No Abstract] [Full Text] [Related]
14. Possible mechanisms underlying slow component of V̇O2 on-kinetics in skeletal muscle. Korzeniewski B; Zoladz JA J Appl Physiol (1985); 2015 May; 118(10):1240-9. PubMed ID: 25767031 [TBL] [Abstract][Full Text] [Related]
15. Influence of phosphagen concentration on phosphocreatine breakdown kinetics. Data from human gastrocnemius muscle. Francescato MP; Cettolo V; di Prampero PE J Appl Physiol (1985); 2008 Jul; 105(1):158-64. PubMed ID: 18436701 [TBL] [Abstract][Full Text] [Related]
16. Theoretical studies on the regulation of anaerobic glycolysis and its influence on oxidative phosphorylation in skeletal muscle. Korzeniewski B; Liguzinski P Biophys Chem; 2004 Jul; 110(1-2):147-69. PubMed ID: 15223151 [TBL] [Abstract][Full Text] [Related]
17. Energy metabolism in intensively exercising calf muscle under a simulated orthostasis. Zange J; Beisteiner M; Müller K; Shushakov V; Maassen N Pflugers Arch; 2008 Mar; 455(6):1153-63. PubMed ID: 17940794 [TBL] [Abstract][Full Text] [Related]
18. Training-induced adaptation of oxidative phosphorylation in skeletal muscles. Korzeniewski B; Zoladz JA Biochem J; 2003 Aug; 374(Pt 1):37-40. PubMed ID: 12741955 [TBL] [Abstract][Full Text] [Related]
19. The "glycogen shunt" in exercising muscle: A role for glycogen in muscle energetics and fatigue. Shulman RG; Rothman DL Proc Natl Acad Sci U S A; 2001 Jan; 98(2):457-61. PubMed ID: 11209049 [TBL] [Abstract][Full Text] [Related]
20. Is creatine phosphokinase in equilibrium in skeletal muscle? Brown TR Fed Proc; 1982 Feb; 41(2):174-5. PubMed ID: 7060742 [No Abstract] [Full Text] [Related] [Next] [New Search]