These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 1913202)

  • 1. [The effect of glutaraldehyde preparations on the properties of biological heart valve prostheses].
    Vrsanský D
    Bratisl Lek Listy; 1991 Jul; 92(7):352-4. PubMed ID: 1913202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [In vitro comparison of properties of aortic allotransplants and the Björk-Shiley valve].
    Vrsanský D; Simkovic I
    Rozhl Chir; 1991 Feb; 70(1-2):60-3. PubMed ID: 1925786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viscoelasticity of dynamically fixed bioprosthetic valves. II. Effect of glutaraldehyde concentration.
    Duncan AC; Boughner D; Vesely I
    J Thorac Cardiovasc Surg; 1997 Feb; 113(2):302-10. PubMed ID: 9040624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glutaraldehyde fixation alters the internal shear properties of porcine aortic heart valve tissue.
    Talman EA; Boughner DR
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S369-73. PubMed ID: 7646190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutaraldehyde affects biocompatibility of bioprosthetic heart valves.
    Grimm M; Eybl E; Grabenwöger M; Spreitzer H; Jäger W; Grimm G; Böck P; Müller MM; Wolner E
    Surgery; 1992 Jan; 111(1):74-8. PubMed ID: 1728078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observations on glutaraldehyde-treated heterologous cardiac valves.
    Bodnar E; Olsen EG; Ross DN
    Thorax; 1979 Dec; 34(6):794-800. PubMed ID: 120617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relationship between mechanical and hydrodynamic properties of bioprosthesis produced from canine aortic valve.
    Sato M; Maeta H; Okamura K; Ohshima N
    Artif Organs; 1985 May; 9(2):184-91. PubMed ID: 4015456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Glutaraldehyde residues in heart valve prostheses].
    Spreitzer H; Jäger W; Grimm M; Eybl E; Müller M
    Arch Pharm (Weinheim); 1990 Oct; 323(10):881-2. PubMed ID: 2127881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration of glutaraldehyde in fixation of bioprosthetic valves.
    Chanda J; Kuribayashi R; Abe T
    J Thorac Cardiovasc Surg; 1997 Sep; 114(3):512-3. PubMed ID: 9305216
    [No Abstract]   [Full Text] [Related]  

  • 10. [Experimental and clinical studies on the antigenicity of glutaraldehyde-treated porcine aortic valves].
    Ma ZL
    Zhonghua Yi Xue Za Zhi; 1984 Jan; 64(1):33-5. PubMed ID: 6430491
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of the cross-linking characteristics of porcine heart valves fixed with glutaraldehyde or epoxy compounds.
    Sung HW; Shen SH; Tu R; Lin D; Hata C; Noishiki Y; Tomizawa Y; Quijano RC
    ASAIO J; 1993; 39(3):M532-6. PubMed ID: 8268592
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Normal aortic valves stay open much longer in systole than porcine substitutes.
    Subhani M; Kumar RK; Balakrishnan KR
    Asian Cardiovasc Thorac Ann; 2013 Jun; 21(3):275-80. PubMed ID: 24570492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamic comparison of biological prostheses during progressive valve calcification in a simulated exercise situation. An in vitro study.
    Bakhtiary F; Dzemali O; Steinseiffer U; Schmitz C; Glasmacher B; Moritz A; Kleine P
    Eur J Cardiothorac Surg; 2008 Nov; 34(5):960-3. PubMed ID: 18774723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Matrix metalloproteinases and tissue valve degeneration.
    Bracher M; Simionescu D; Simionescu A; Davies N; Human P; Zilla P
    J Long Term Eff Med Implants; 2001; 11(3-4):221-30. PubMed ID: 11921665
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antigen depressant effect of glutaraldehyde for aortic heterografts with a valve, with special reference to a concentration right fit for the preservation of grafts.
    Okamura K; Chiba C; Iriyama T; Itoh T; Maeta H; Ijima H; Mitsui T; Hori M
    Surgery; 1980 Feb; 87(2):170-6. PubMed ID: 6766575
    [No Abstract]   [Full Text] [Related]  

  • 16. [Manufacture of valvular prostheses from bovine pericardium, their evaluation and the initial results of the 1st group of implants].
    Fernández de la Reguera G; Alzaga MT; Cabrera J; Soní J; Kabela E
    Arch Inst Cardiol Mex; 1984; 54(4):333-44. PubMed ID: 6437350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small aortic annulus: the hydrodynamic performances of 5 commercially available tissue valves.
    Gerosa G; Tarzia V; Rizzoli G; Bottio T
    J Thorac Cardiovasc Surg; 2006 May; 131(5):1058-64. PubMed ID: 16678590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are allografts the biologic valve of choice for aortic valve replacement in nonelderly patients? Comparison of explantation for structural valve deterioration of allograft and pericardial prostheses.
    Smedira NG; Blackstone EH; Roselli EE; Laffey CC; Cosgrove DM
    J Thorac Cardiovasc Surg; 2006 Mar; 131(3):558-564.e4. PubMed ID: 16515905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological function of stentless aortic valves is altered by trimming and removal of aortic wall components.
    Kuehnel RU; Stock UA; Wendt MO; Degenkolbe I; Jainski U; Hartrumpf M; Pohl M; Albes JM
    Interact Cardiovasc Thorac Surg; 2007 Apr; 6(2):182-7. PubMed ID: 17669805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Open aortic bioprosthesis at zero pressure. A new concept in glutaraldehyde fixation of tissue valve.
    Imamura E; Wada J
    J Cardiovasc Surg (Torino); 1980; 21(5):617-24. PubMed ID: 7451570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.