These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 19132116)

  • 1. Fishing for the genetic basis of cardiovascular disease.
    Dahme T; Katus HA; Rottbauer W
    Dis Model Mech; 2009; 2(1-2):18-22. PubMed ID: 19132116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish models of cardiovascular disease.
    Bournele D; Beis D
    Heart Fail Rev; 2016 Nov; 21(6):803-813. PubMed ID: 27503203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling human hematopoietic and cardiovascular diseases in zebrafish.
    North TE; Zon LI
    Dev Dyn; 2003 Nov; 228(3):568-83. PubMed ID: 14579393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation and Application of the Zebrafish
    Lu S; Hu M; Wang Z; Liu H; Kou Y; Lyu Z; Tian J
    Biomolecules; 2020 Nov; 10(11):. PubMed ID: 33198188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Essential light chain S195 phosphorylation is required for cardiac adaptation under physical stress.
    Scheid LM; Mosqueira M; Hein S; Kossack M; Juergensen L; Mueller M; Meder B; Fink RH; Katus HA; Hassel D
    Cardiovasc Res; 2016 Jul; 111(1):44-55. PubMed ID: 27013636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic suppressor screens in haploids.
    Bai X; Yang Z; Jiang H; Lin S; Zon LI
    Methods Cell Biol; 2011; 104():129-36. PubMed ID: 21924160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders.
    Tessadori F; Roessler HI; Savelberg SMC; Chocron S; Kamel SM; Duran KJ; van Haelst MM; van Haaften G; Bakkers J
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding neurobehavioral genetics of zebrafish.
    Cheresiz SV; Volgin AD; Kokorina Evsyukova A; Bashirzade AAO; Demin KA; de Abreu MS; Amstislavskaya TG; Kalueff AV
    J Neurogenet; 2020; 34(2):203-215. PubMed ID: 31902276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress in the use of zebrafish for novel cardiac drug discovery.
    Keßler M; Rottbauer W; Just S
    Expert Opin Drug Discov; 2015; 10(11):1231-41. PubMed ID: 26294375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling cardiovascular disease in the zebrafish.
    Chico TJ; Ingham PW; Crossman DC
    Trends Cardiovasc Med; 2008 May; 18(4):150-5. PubMed ID: 18555188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Early sarcomere and metabolic defects in a zebrafish
    Collins MM; Ahlberg G; Hansen CV; Guenther S; Marín-Juez R; Sokol AM; El-Sammak H; Piesker J; Hellsten Y; Olesen MS; Stainier DYR; Lundegaard PR
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24115-24121. PubMed ID: 31704768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Screen for Postembryonic Development in the Zebrafish (
    Henke K; Daane JM; Hawkins MB; Dooley CM; Busch-Nentwich EM; Stemple DL; Harris MP
    Genetics; 2017 Oct; 207(2):609-623. PubMed ID: 28835471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death.
    Huttner IG; Trivedi G; Jacoby A; Mann SA; Vandenberg JI; Fatkin D
    J Mol Cell Cardiol; 2013 Aug; 61():123-32. PubMed ID: 23791817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic compensation in a stable slc25a46 mutant zebrafish: A case for using F0 CRISPR mutagenesis to study phenotypes caused by inherited disease.
    Buglo E; Sarmiento E; Martuscelli NB; Sant DW; Danzi MC; Abrams AJ; Dallman JE; Züchner S
    PLoS One; 2020; 15(3):e0230566. PubMed ID: 32208444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE.
    Gut P; Reischauer S; Stainier DYR; Arnaout R
    Physiol Rev; 2017 Jul; 97(3):889-938. PubMed ID: 28468832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding cardiac sarcomere assembly with zebrafish genetics.
    Yang J; Shih YH; Xu X
    Anat Rec (Hoboken); 2014 Sep; 297(9):1681-93. PubMed ID: 25125181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Making waves in cancer research: new models in the zebrafish.
    Berghmans S; Jette C; Langenau D; Hsu K; Stewart R; Look T; Kanki JP
    Biotechniques; 2005 Aug; 39(2):227-37. PubMed ID: 16116796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional genomics tools for the analysis of zebrafish pigment.
    Pickart MA; Sivasubbu S; Nielsen AL; Shriram S; King RA; Ekker SC
    Pigment Cell Res; 2004 Oct; 17(5):461-70. PubMed ID: 15357832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The zebrafish
    Koopman CD; De Angelis J; Iyer SP; Verkerk AO; Da Silva J; Berecki G; Jeanes A; Baillie GJ; Paterson S; Uribe V; Ehrlich OV; Robinson SD; Garric L; Petrou S; Simons C; Vetter I; Hogan BM; de Boer TP; Bakkers J; Smith KA
    Proc Natl Acad Sci U S A; 2021 Mar; 118(9):. PubMed ID: 33597309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zebrafish myelopoiesis and blood cell development.
    Hsu K; Kanki JP; Look AT
    Curr Opin Hematol; 2001 Jul; 8(4):245-51. PubMed ID: 11561163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.