These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 19132512)
1. The preparation, cytocompatibility, and in vitro biodegradation study of pure beta-TCP on magnesium. Geng F; Tan LL; Jin XX; Yang JY; Yang K J Mater Sci Mater Med; 2009 May; 20(5):1149-57. PubMed ID: 19132512 [TBL] [Abstract][Full Text] [Related]
2. Upregulation of cell proliferation via Shc and ERK1/2 MAPK signaling in SaOS-2 osteoblasts grown on magnesium alloy surface coating with tricalcium phosphate. Jiang T; Guo L; Ni S; Zhao Y J Mater Sci Mater Med; 2015 Apr; 26(4):158. PubMed ID: 25783501 [TBL] [Abstract][Full Text] [Related]
4. Physical properties and cellular responses to calcium phosphate coating produced by laser rapid forming on titanium. Gao Y; Hu J; Guan TH; Wu J; Zhang CB; Gao B Lasers Med Sci; 2014 Jan; 29(1):9-17. PubMed ID: 23139072 [TBL] [Abstract][Full Text] [Related]
5. Human osteoblasts adhesion and proliferation on magnesium-substituted tricalcium phosphate dense tablets. Sader MS; Legeros RZ; Soares GA J Mater Sci Mater Med; 2009 Feb; 20(2):521-7. PubMed ID: 18987959 [TBL] [Abstract][Full Text] [Related]
6. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold. Kim HW; Kim HE; Salih V; Knowles JC J Biomed Mater Res A; 2004 Mar; 68(3):522-30. PubMed ID: 14762932 [TBL] [Abstract][Full Text] [Related]
7. In vitro and in vivo evaluations on osteogenesis and biodegradability of a β-tricalcium phosphate coated magnesium alloy. Chai H; Guo L; Wang X; Gao X; Liu K; Fu Y; Guan J; Tan L; Yang K J Biomed Mater Res A; 2012 Feb; 100(2):293-304. PubMed ID: 22045631 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and biological characteristics of beta-tricalcium phosphate porous ceramic scaffolds reinforced with calcium phosphate glass. Cai S; Xu GH; Yu XZ; Zhang WJ; Xiao ZY; Yao KD J Mater Sci Mater Med; 2009 Jan; 20(1):351-8. PubMed ID: 18807260 [TBL] [Abstract][Full Text] [Related]
9. ZnO, SiO2, and SrO doping in resorbable tricalcium phosphates: Influence on strength degradation, mechanical properties, and in vitro bone-cell material interactions. Bandyopadhyay A; Petersen J; Fielding G; Banerjee S; Bose S J Biomed Mater Res B Appl Biomater; 2012 Nov; 100(8):2203-12. PubMed ID: 22997062 [TBL] [Abstract][Full Text] [Related]
10. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Ryu HS; Hong KS; Lee JK; Kim DJ; Lee JH; Chang BS; Lee DH; Lee CK; Chung SS Biomaterials; 2004 Feb; 25(3):393-401. PubMed ID: 14585687 [TBL] [Abstract][Full Text] [Related]
11. Behavior of Osteoblast-Like Cells on a β-Tricalcium Phosphate Synthetic Scaffold Coated With Calcium Phosphate and Magnesium. Park KD; Jung YS; Lee KK; Park HJ J Craniofac Surg; 2016 Jun; 27(4):898-903. PubMed ID: 27244203 [TBL] [Abstract][Full Text] [Related]
12. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures. Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984 [TBL] [Abstract][Full Text] [Related]
13. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells. Homaeigohar SSh; Shokrgozar MA; Khavandi A; Sadi AY J Biomed Mater Res A; 2008 Feb; 84(2):491-9. PubMed ID: 17618499 [TBL] [Abstract][Full Text] [Related]
14. Preliminary beta-tricalcium phosphate coating prepared by discharging in a modified body fluid enhances collagen immobilization onto titanium. Hosaka M; Shibata Y; Miyazaki T J Biomed Mater Res B Appl Biomater; 2006 Aug; 78(2):237-42. PubMed ID: 16362961 [TBL] [Abstract][Full Text] [Related]
15. The effects of β-TCP on mechanical properties, corrosion behavior and biocompatibility of β-TCP/Zn-Mg composites. Pan C; Sun X; Xu G; Su Y; Liu D Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110397. PubMed ID: 31923980 [TBL] [Abstract][Full Text] [Related]
16. Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Zomorodian A; Garcia MP; Moura e Silva T; Fernandes JC; Fernandes MH; Montemor MF Acta Biomater; 2013 Nov; 9(10):8660-70. PubMed ID: 23454214 [TBL] [Abstract][Full Text] [Related]
17. Development of beta-tricalcium phosphate/sol-gel derived bioactive glass composites: physical, mechanical, and in vitro biological evaluations. Hesaraki S; Safari M; Shokrgozar MA J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):459-69. PubMed ID: 19507141 [TBL] [Abstract][Full Text] [Related]
18. Degradation behaviors and cytocompatibility of Mg/β-tricalcium phosphate composites produced by spark plasma sintering. Narita K; Tian Q; Johnson I; Zhang C; Kobayashi E; Liu H J Biomed Mater Res B Appl Biomater; 2019 Oct; 107(7):2238-2253. PubMed ID: 30707487 [TBL] [Abstract][Full Text] [Related]
19. Wetting effects on in vitro bioactivity and in vitro biocompatibility of laser micro-textured Ca-P coating. Paital SR; Cao Z; He W; Dahotre NB Biofabrication; 2010 Jun; 2(2):025001. PubMed ID: 20811129 [TBL] [Abstract][Full Text] [Related]
20. Osteoblast interactions with calcium phosphate ceramics modified by coating with type I collagen. Brodie JC; Goldie E; Connel G; Merry J; Grant MH J Biomed Mater Res A; 2005 Jun; 73(4):409-21. PubMed ID: 15892144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]