BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19132592)

  • 1. A molecular fragments variable connectivity index for studying the toxicity (Vibrio fischeri pT50) of substituted-benzenes.
    Chen Q; Kou YW; Wang Q; Chen H; Yuan J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2009 Feb; 44(3):288-94. PubMed ID: 19132592
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity prediction of dioxins and dioxins-like compounds based on the molecular fragments variable connectivity index.
    Chen Q; Sun J; Liu J
    Bull Environ Contam Toxicol; 2011 Aug; 87(2):134-7. PubMed ID: 21626111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological study on the toxicity of ionic liquids on Vibrio fischeri by the quantitative structure-activity relationship method.
    Yan F; Shang Q; Xia S; Wang Q; Ma P
    J Hazard Mater; 2015 Apr; 286():410-5. PubMed ID: 25603290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel RBF neural network training methodology to predict toxicity to Vibrio fischeri.
    Melagraki G; Afantitis A; Sarimveis H; Igglessi-Markopoulou O; Alexandridis A
    Mol Divers; 2006 May; 10(2):213-21. PubMed ID: 16802064
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How the structure of ionic liquid affects its toxicity to Vibrio fischeri?
    Grzonkowska M; Sosnowska A; Barycki M; Rybinska A; Puzyn T
    Chemosphere; 2016 Sep; 159():199-207. PubMed ID: 27295436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of cyclodextrin complexation on the Vibrio fischeri toxicity of phenylsulfonyl carboxylates.
    Liu XH; Hou J; Wang L; Luo WR; Cui BS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(2):149-53. PubMed ID: 17182385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration.
    Wang Y; Yang X; Wang J; Cong Y; Mu J; Jin F
    J Hazard Mater; 2016 May; 308():149-56. PubMed ID: 26812082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of aquatic toxicity: use of optimization of correlation weights of local graph invariants.
    Toropov AA; Schultz TW
    J Chem Inf Comput Sci; 2003; 43(2):560-7. PubMed ID: 12653522
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A quantitative structure-activity relationship approach for assessing toxicity of mixture of organic compounds.
    Chang CM; Ou YH; Liu TC; Lu SY; Wang MK
    SAR QSAR Environ Res; 2016 Jun; 27(6):441-53. PubMed ID: 27426856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study on quantitative structure-toxicity relationships of benzene derivatives acting by narcosis.
    Khadikar PV; Mather KC; Singh S; Phadnis A; Shrivastava A; Mandaloi M
    Bioorg Med Chem; 2002 Jun; 10(6):1761-6. PubMed ID: 11937334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSARS for acute toxicity of halogenated benzenes to bacteria in natural waters.
    Lu GH; Wang C; Li YM
    Biomed Environ Sci; 2006 Dec; 19(6):457-60. PubMed ID: 17319271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-toxicity relationships for halogenated substituted-benzenes to Vibrio fischeri, using atom-based semi-empirical molecular-orbital descriptors.
    Warne MA; Osborn D; Lindon JC; Nicholson JK
    Chemosphere; 1999 Jun; 38(14):3357-82. PubMed ID: 10390847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Holographic quantitative structure-activity relationship for prediction acute toxicity of benzene derivatives to the guppy (Poecilia reticulata).
    Huang H; Wang XD; Dai XL; Yu YJ; Wang LS
    J Environ Sci (China); 2004; 16(3):423-7. PubMed ID: 15272716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A K(ow)-based QSAR model for predicting toxicity of halogenated benzenes to all algae regardless of species.
    Zeng M; Lin Z; Yin D; Zhang Y; Kong D
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):565-70. PubMed ID: 21516454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative structure-activity relationships for the toxicity of substituted benzenes to Cyprinus carpio.
    Lu GH; Wang C; Yuan X; Lang PZ
    Biomed Environ Sci; 2005 Feb; 18(1):53-7. PubMed ID: 15861779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Quantitative Structure-Activity Relationship Models for Predicting Chronic Toxicity of Substituted Benzenes to Daphnia Magna.
    Fan D; Liu J; Wang L; Yang X; Zhang S; Zhang Y; Shi L
    Bull Environ Contam Toxicol; 2016 May; 96(5):664-70. PubMed ID: 27016939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR study on toxicity to aqueous organisms using the PI index.
    Khadikar PV; Phadnis A; Shrivastava A
    Bioorg Med Chem; 2002 Apr; 10(4):1181-8. PubMed ID: 11836129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of quantitative structure activity relationships in toxicity prediction of complex mixtures.
    Yu HX; Lin ZF; Feng JF; Xu TL; Wang LS
    Acta Pharmacol Sin; 2001 Jan; 22(1):45-9. PubMed ID: 11730561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. QSAR for predicting joint toxicity of halogenated benzenes to Dicrateria zhanjiangensis.
    Zeng M; Lin Z; Yin D; Yin K
    Bull Environ Contam Toxicol; 2008 Dec; 81(6):525-30. PubMed ID: 18854906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSAR study for predicting the ecotoxicity of NADES towards Aliivibrio fischeri. Exploring the use of mixing rules.
    Giner B; Lafuente C; Lapeña D; Errazquin D; Lomba L
    Ecotoxicol Environ Saf; 2020 Mar; 191():110004. PubMed ID: 31810589
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.