BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19132758)

  • 1. Magnetic resonance elastography with a phased-array acoustic driver system.
    Mariappan YK; Rossman PJ; Glaser KJ; Manduca A; Ehman RL
    Magn Reson Med; 2009 Mar; 61(3):678-85. PubMed ID: 19132758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance elastography with twin drivers for high homogeneity and sensitivity.
    Zheng Y; Chan QC; Yang ES
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():1916-9. PubMed ID: 17945682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Convertible pneumatic actuator for magnetic resonance elastography of the brain.
    Latta P; Gruwel ML; Debergue P; Matwiy B; Sboto-Frankenstein UN; Tomanek B
    Magn Reson Imaging; 2011 Jan; 29(1):147-52. PubMed ID: 20833495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound Shear Wave Elastography for Liver Disease. A Critical Appraisal of the Many Actors on the Stage.
    Piscaglia F; Salvatore V; Mulazzani L; Cantisani V; Schiavone C
    Ultraschall Med; 2016 Feb; 37(1):1-5. PubMed ID: 26871407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative shear-wave optical coherence elastography with a programmable phased array ultrasound as the wave source.
    Song S; Le NM; Huang Z; Shen T; Wang RK
    Opt Lett; 2015 Nov; 40(21):5007-10. PubMed ID: 26512505
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient shear wave elastography using transient acoustic radiation force excitations and MR displacement encoding.
    Hofstetter LW; Odéen H; Bolster BD; Mueller A; Christensen DA; Payne A; Parker DL
    Magn Reson Med; 2019 May; 81(5):3153-3167. PubMed ID: 30663806
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The feasibility of endorectal MR elastography for prostate cancer localization.
    Arani A; Plewes D; Krieger A; Chopra R
    Magn Reson Med; 2011 Dec; 66(6):1649-57. PubMed ID: 21574182
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.
    Liu Y; Liu J; Fite BZ; Foiret J; Ilovitsh A; Leach JK; Dumont E; Caskey CF; Ferrara KW
    Phys Med Biol; 2017 May; 62(10):4083-4106. PubMed ID: 28426437
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo MR elastography of the prostate gland using a transurethral actuator.
    Chopra R; Arani A; Huang Y; Musquera M; Wachsmuth J; Bronskill M; Plewes D
    Magn Reson Med; 2009 Sep; 62(3):665-71. PubMed ID: 19572390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring shear-wave speed with point shear-wave elastography and MR elastography: a phantom study.
    Kishimoto R; Suga M; Koyama A; Omatsu T; Tachibana Y; Ebner DK; Obata T
    BMJ Open; 2017 Jan; 7(1):e013925. PubMed ID: 28057657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo tumor detection on rabbit with biopsy needle as MRE driver.
    Zhao XG; Zheng Y; Liang JM; Chan QC; Yang XF; Li G; Yang ES
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():121-4. PubMed ID: 19162608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic resonance elastography of the brain: A study of feasibility and reproducibility using an ergonomic pillow-like passive driver.
    Huang X; Chafi H; Matthews KL; Carmichael O; Li T; Miao Q; Wang S; Jia G
    Magn Reson Imaging; 2019 Jun; 59():68-76. PubMed ID: 30858002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A thickness mode acoustic wave sensor for measuring interface stiffness between two elastic materials.
    Chen J; Wang W; Wang J; Yang Z; Yang J
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Aug; 55(8):1678-81. PubMed ID: 18986911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic resonance elastography: Inversions in bounded media.
    Kolipaka A; McGee KP; Manduca A; Romano AJ; Glaser KJ; Araoz PA; Ehman RL
    Magn Reson Med; 2009 Dec; 62(6):1533-42. PubMed ID: 19780146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated optical coherence tomography and multielement ultrasound transducer probe for shear wave elasticity imaging of moving tissues.
    Karpiouk AB; VanderLaan DJ; Larin KV; Emelianov SY
    J Biomed Opt; 2018 Oct; 23(10):1-7. PubMed ID: 30369107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance elastography hardware design: a survey.
    Tse ZT; Janssen H; Hamed A; Ristic M; Young I; Lamperth M
    Proc Inst Mech Eng H; 2009 May; 223(4):497-514. PubMed ID: 19499839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acousto-optic interaction in a non-homogeneous acoustic field excited by a wedge-shaped transducer.
    Balakshy VI; Linde BB; Vostrikova AN
    Ultrasonics; 2008 Sep; 48(5):351-6. PubMed ID: 18291434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-field acoustomammography using an acousto-optic sensor.
    Sandhu JS; Schmidt RA; La Rivière PJ
    Med Phys; 2009 Jun; 36(6):2324-7. PubMed ID: 19610321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Brain-mimicking phantom for biomechanical validation of motion sensitive MR imaging techniques.
    Ozkaya E; Triolo ER; Rezayaraghi F; Abderezaei J; Meinhold W; Hong K; Alipour A; Kennedy P; Fleysher L; Ueda J; Balchandani P; Eriten M; Johnson CL; Yang Y; Kurt M
    J Mech Behav Biomed Mater; 2021 Oct; 122():104680. PubMed ID: 34271404
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probe Oscillation Shear Elastography (PROSE): A High Frame-Rate Method for Two-Dimensional Ultrasound Shear Wave Elastography.
    Mellema DC; Song P; Kinnick RR; Urban MW; Greenleaf JF; Manduca A; Chen S
    IEEE Trans Med Imaging; 2016 Sep; 35(9):2098-106. PubMed ID: 27076352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.