These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19132797)

  • 1. A model of the cerebellar sensory--motor control applied to fast human forearm movements.
    Eskiizmirliler S; Papaxanthis C; Pozzo T; Darlot C
    J Integr Neurosci; 2008 Dec; 7(4):481-500. PubMed ID: 19132797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proprioceptive feedback during point-to-point arm movements is tuned to the expected dynamics of the task.
    Shapiro MB; Niu CM; Poon C; David FJ; Corcos DM
    Exp Brain Res; 2009 Jun; 195(4):575-91. PubMed ID: 19434401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance.
    Jo S; Massaquoi SG
    Biol Cybern; 2004 Sep; 91(3):188-202. PubMed ID: 15372241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computation of inverse dynamics for the control of movements.
    Darlot C; Zupan L; Etard O; Denise P; Maruani A
    Biol Cybern; 1996 Aug; 75(2):173-86. PubMed ID: 8855355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The timing of control signals underlying fast point-to-point arm movements.
    Ghafouri M; Feldman AG
    Exp Brain Res; 2001 Apr; 137(3-4):411-23. PubMed ID: 11355386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Central modifications of reflex parameters may underlie the fastest arm movements.
    Adamovich SV; Levin MF; Feldman AG
    J Neurophysiol; 1997 Mar; 77(3):1460-9. PubMed ID: 9084611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebellar learning of accurate predictive control for fast-reaching movements.
    Spoelstra J; Schweighofer N; Arbib MA
    Biol Cybern; 2000 Apr; 82(4):321-33. PubMed ID: 10804064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy of planar reaching movements. II. Systematic extent errors resulting from inertial anisotropy.
    Gordon J; Ghilardi MF; Cooper SE; Ghez C
    Exp Brain Res; 1994; 99(1):112-30. PubMed ID: 7925785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control.
    Patla AE; Ishac MG; Winter DA
    Exp Brain Res; 2002 Apr; 143(3):318-27. PubMed ID: 11889509
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of the cerebellar pathways applied to the control of a single-joint robot arm actuated by McKibben artificial muscles.
    Eskiizmirliler S; Forestier N; Tondu B; Darlot C
    Biol Cybern; 2002 May; 86(5):379-94. PubMed ID: 11984652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NeuroMotion: Open-source platform with neuromechanical and deep network modules to generate surface EMG signals during voluntary movement.
    Ma S; Mendez Guerra I; Caillet AH; Zhao J; Clarke AK; Maksymenko K; Deslauriers-Gauthier S; Sheng X; Zhu X; Farina D
    PLoS Comput Biol; 2024 Jul; 20(7):e1012257. PubMed ID: 38959262
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG responses to an unexpected load in fast movements are delayed with an increase in the expected movement time.
    Shapiro MB; Gottlieb GL; Corcos DM
    J Neurophysiol; 2004 May; 91(5):2135-47. PubMed ID: 14724262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebellar control of postural scaling and central set in stance.
    Horak FB; Diener HC
    J Neurophysiol; 1994 Aug; 72(2):479-93. PubMed ID: 7983513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ballistic reactions under different motor sets.
    Castellote JM; Valls-Solé J; Sanegre MT
    Exp Brain Res; 2004 Sep; 158(1):35-42. PubMed ID: 15007585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synaptic linkages between red nucleus cells and limb muscles during a multi-joint motor task.
    Sinkjaer T; Miller L; Andersen T; Houk JC
    Exp Brain Res; 1995; 102(3):546-50. PubMed ID: 7737401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Threshold control of motor actions prevents destabilizing effects of proprioceptive delays.
    Pilon JF; Feldman AG
    Exp Brain Res; 2006 Sep; 174(2):229-39. PubMed ID: 16676171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.