These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19132861)

  • 1. Origin of the activity drop with the E50D variant of catalytic antibody 34E4 for Kemp elimination.
    Alexandrova AN; Jorgensen WL
    J Phys Chem B; 2009 Jan; 113(2):497-504. PubMed ID: 19132861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the catalysis of anti-cocaine catalytic antibody: competing reaction pathways and free energy barriers.
    Pan Y; Gao D; Zhan CG
    J Am Chem Soc; 2008 Apr; 130(15):5140-9. PubMed ID: 18341277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of water in the multifaceted catalytic antibody 4B2 for allylic isomerization and Kemp elimination reactions.
    Acevedo O
    J Phys Chem B; 2009 Nov; 113(46):15372-81. PubMed ID: 19860435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positional ordering of reacting groups contributes significantly to the efficiency of proton transfer at an antibody active site.
    Seebeck FP; Hilvert D
    J Am Chem Soc; 2005 Feb; 127(4):1307-12. PubMed ID: 15669871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination.
    Alexandrova AN; Röthlisberger D; Baker D; Jorgensen WL
    J Am Chem Soc; 2008 Nov; 130(47):15907-15. PubMed ID: 18975945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural origins of efficient proton abstraction from carbon by a catalytic antibody.
    Debler EW; Ito S; Seebeck FP; Heine A; Hilvert D; Wilson IA
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):4984-9. PubMed ID: 15788533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis for a disfavored elimination reaction in catalytic antibody 1D4.
    Larsen NA; Heine A; Crane L; Cravatt BF; Lerner RA; Wilson IA
    J Mol Biol; 2001 Nov; 314(1):93-102. PubMed ID: 11724535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Origins and predictions of stereoselective antibody catalysis: theoretical analysis of Diels-Alder catalysis by 39A11 and its germ-line antibody.
    Zhang X; Deng Q; Yoo SH; Houk KN
    J Org Chem; 2002 Dec; 67(25):9043-53. PubMed ID: 12467427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Site-Directed Chemical Mutations on Abzymes: Large Rate Accelerations in the Catalysis by Exchanging the Functionalized Small Nonprotein Components.
    Ishikawa F; Shirahashi M; Hayakawa H; Yamaguchi A; Hirokawa T; Tsumuraya T; Fujii I
    ACS Chem Biol; 2016 Oct; 11(10):2803-2811. PubMed ID: 27552288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immunological origins of binding and catalysis in a Diels-Alderase antibody.
    Romesberg FE; Spiller B; Schultz PG; Stevens RC
    Science; 1998 Mar; 279(5358):1929-33. PubMed ID: 9506942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of a catalytic antibody with a serine protease active site.
    Zhou GW; Guo J; Huang W; Fletterick RJ; Scanlan TS
    Science; 1994 Aug; 265(5175):1059-64. PubMed ID: 8066444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kemp Eliminase Activity of Ketosteroid Isomerase.
    Lamba V; Sanchez E; Fanning LR; Howe K; Alvarez MA; Herschlag D; Forconi M
    Biochemistry; 2017 Jan; 56(4):582-591. PubMed ID: 28045505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis.
    Xu J; Song J; Yan F; Chu H; Luo J; Zhao Y; Cheng X; Luo G; Zheng Q; Wei J
    J Mol Recognit; 2009; 22(4):293-300. PubMed ID: 19277948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing the importance of second sphere residues in an esterolytic antibody by phage display.
    Arkin MR; Wells JA
    J Mol Biol; 1998 Dec; 284(4):1083-94. PubMed ID: 9837728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of shape complementarity and catalytic efficiency from a primordial antibody template.
    Xu J; Deng Q; Chen J; Houk KN; Bartek J; Hilvert D; Wilson IA
    Science; 1999 Dec; 286(5448):2345-8. PubMed ID: 10600746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonspecific medium effects versus specific group positioning in the antibody and albumin catalysis of the base-promoted ring-opening reactions of benzisoxazoles.
    Hu Y; Houk KN; Kikuchi K; Hotta K; Hilvert D
    J Am Chem Soc; 2004 Jul; 126(26):8197-205. PubMed ID: 15225061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kemp Elimination Catalyzed by Naturally Occurring Aldoxime Dehydratases.
    Miao Y; Metzner R; Asano Y
    Chembiochem; 2017 Mar; 18(5):451-454. PubMed ID: 28120515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational isomerism can limit antibody catalysis.
    Debler EW; Müller R; Hilvert D; Wilson IA
    J Biol Chem; 2008 Jun; 283(24):16554-60. PubMed ID: 18417480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism of enantioselective proton transfer to carbon in catalytic antibody 14D9.
    Zheng L; Baumann U; Reymond JL
    Proc Natl Acad Sci U S A; 2004 Mar; 101(10):3387-92. PubMed ID: 14988504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binding and catalysis: a thermodynamic study on a catalytic antibody system.
    Wade H; Scanlan TS
    Chembiochem; 2003 Jun; 4(6):537-40. PubMed ID: 12794866
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.