These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 19132978)

  • 1. Identifying rarer genetic variants for common complex diseases: diseased versus neutral discovery panels.
    Curtin K; Iles MM; Camp NJ
    Ann Hum Genet; 2009 Jan; 73(1):54-60. PubMed ID: 19132978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine-scale structure of the genome and markers used in association mapping.
    Curtin K; Camp NJ
    Methods Mol Biol; 2011; 713():71-88. PubMed ID: 21153612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selection and evaluation of tagging SNPs in the neuronal-sodium-channel gene SCN1A: implications for linkage-disequilibrium gene mapping.
    Weale ME; Depondt C; Macdonald SJ; Smith A; Lai PS; Shorvon SD; Wood NW; Goldstein DB
    Am J Hum Genet; 2003 Sep; 73(3):551-65. PubMed ID: 12900796
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification and correction of bias in tagging SNPs caused by insufficient sample size and marker density by means of haplotype-dropping.
    Iles MM
    Genet Epidemiol; 2008 Jan; 32(1):20-8. PubMed ID: 17685414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The whole genome tagSNP selection and transferability among HapMap populations.
    Mägi R; Kaplinski L; Remm M
    Pac Symp Biocomput; 2006; ():535-43. PubMed ID: 17094267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power to detect risk alleles using genome-wide tag SNP panels.
    Eberle MA; Ng PC; Kuhn K; Zhou L; Peiffer DA; Galver L; Viaud-Martinez KA; Lawley CT; Gunderson KL; Shen R; Murray SS
    PLoS Genet; 2007 Oct; 3(10):1827-37. PubMed ID: 17922574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for the selection of tagging SNPs: a comparison of tagging efficiency and performance.
    Ding K; Kullo IJ
    Eur J Hum Genet; 2007 Feb; 15(2):228-36. PubMed ID: 17164795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selecting tagging SNPs for association studies using power calculations from genotype data.
    Hu X; Schrodi SJ; Ross DA; Cargill M
    Hum Hered; 2004; 57(3):156-70. PubMed ID: 15297809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of the role of common genetic variation in the transient neonatal diabetes mellitus (TNDM) region in type 2 diabetes: a comparative genomic and tagging single nucleotide polymorphism approach.
    Gloyn AL; Mackay DJ; Weedon MN; McCarthy MI; Walker M; Hitman G; Knight BA; Owen KR; Hattersley AT; Frayling TM
    Diabetes; 2006 Aug; 55(8):2272-6. PubMed ID: 16873690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A compilation of tri-allelic SNPs from 1000 Genomes and use of the most polymorphic loci for a large-scale human identification panel.
    Phillips C; Amigo J; Tillmar AO; Peck MA; de la Puente M; Ruiz-Ramírez J; Bittner F; Idrizbegović Š; Wang Y; Parsons TJ; Lareu MV
    Forensic Sci Int Genet; 2020 May; 46():102232. PubMed ID: 31986343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of inflammation-related genes for pathway-focused genetic analysis.
    Loza MJ; McCall CE; Li L; Isaacs WB; Xu J; Chang BL
    PLoS One; 2007 Oct; 2(10):e1035. PubMed ID: 17940599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of weighted reference panels based on empirical estimates of ancestry for capturing untyped variation.
    Egyud MR; Gajdos ZK; Butler JL; Tischfield S; Le Marchand L; Kolonel LN; Haiman CA; Henderson BE; Hirschhorn JN
    Hum Genet; 2009 Apr; 125(3):295-303. PubMed ID: 19184111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating the number of unseen variants in the human genome.
    Ionita-Laza I; Lange C; M Laird N
    Proc Natl Acad Sci U S A; 2009 Mar; 106(13):5008-13. PubMed ID: 19276111
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fine mapping of disease genes using tagging SNPs.
    Sjölander A; Hössjer O; Hartman LW; Humphreys K
    Ann Hum Genet; 2007 Nov; 71(Pt 6):815-27. PubMed ID: 17587339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Disease-associated alleles in genome-wide association studies are enriched for derived low frequency alleles relative to HapMap and neutral expectations.
    Lachance J
    BMC Med Genomics; 2010 Dec; 3():57. PubMed ID: 21143973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What can genome-wide association studies tell us about the genetics of common disease?
    Iles MM
    PLoS Genet; 2008 Feb; 4(2):e33. PubMed ID: 18454206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient genomewide selection of PCA-correlated tSNPs for genotype imputation.
    Javed A; Drineas P; Mahoney MW; Paschou P
    Ann Hum Genet; 2011 Nov; 75(6):707-22. PubMed ID: 21902678
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detailed analysis of the relative power of direct and indirect association studies and the implications for their interpretation.
    Moskvina V; O'Donovan MC
    Hum Hered; 2007; 64(1):63-73. PubMed ID: 17483598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imputation-based assessment of next generation rare exome variant arrays.
    Martin AR; Tse G; Bustamante CD; Kenny EE
    Pac Symp Biocomput; 2014; ():241-52. PubMed ID: 24297551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discovery of rare variants via sequencing: implications for the design of complex trait association studies.
    Li B; Leal SM
    PLoS Genet; 2009 May; 5(5):e1000481. PubMed ID: 19436704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.