These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
356 related articles for article (PubMed ID: 19133029)
1. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029 [TBL] [Abstract][Full Text] [Related]
2. Beneficial effect of hydrophilized porous polymer scaffolds in tissue-engineered cartilage formation. Ju YM; Park K; Son JS; Kim JJ; Rhie JW; Han DK J Biomed Mater Res B Appl Biomater; 2008 Apr; 85(1):252-60. PubMed ID: 17973245 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of biodegradable polyesters modified by type II collagen and Arg-Gly-Asp as tissue engineering scaffolding materials for cartilage regeneration. Hsu SH; Chang SH; Yen HJ; Whu SW; Tsai CL; Chen DC Artif Organs; 2006 Jan; 30(1):42-55. PubMed ID: 16409397 [TBL] [Abstract][Full Text] [Related]
4. Composite poly-L-lactic acid/poly-(α,β)-DL-aspartic acid/collagen nanofibrous scaffolds for dermal tissue regeneration. Ravichandran R; Venugopal JR; Sundarrajan S; Mukherjee S; Sridhar R; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1443-51. PubMed ID: 24364944 [TBL] [Abstract][Full Text] [Related]
5. Characterizations of chondrocyte attachment and proliferation on electrospun biodegradable scaffolds of PLLA and PBSA for use in cartilage tissue engineering. Wei JD; Tseng H; Chen ET; Hung CH; Liang YC; Sheu MT; Chen CH J Biomater Appl; 2012 May; 26(8):963-85. PubMed ID: 21273264 [TBL] [Abstract][Full Text] [Related]
6. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Conoscenti G; Schneider T; Stoelzel K; Carfì Pavia F; Brucato V; Goegele C; La Carrubba V; Schulze-Tanzil G Mater Sci Eng C Mater Biol Appl; 2017 Nov; 80():449-459. PubMed ID: 28866186 [TBL] [Abstract][Full Text] [Related]
7. In vitro chondrocyte behavior on porous biodegradable poly(e-caprolactone)/polyglycolic acid scaffolds for articular chondrocyte adhesion and proliferation. Jonnalagadda JB; Rivero IV; Dertien JS J Biomater Sci Polym Ed; 2015; 26(7):401-19. PubMed ID: 25671317 [TBL] [Abstract][Full Text] [Related]
8. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Li WJ; Cooper JA; Mauck RL; Tuan RS Acta Biomater; 2006 Jul; 2(4):377-85. PubMed ID: 16765878 [TBL] [Abstract][Full Text] [Related]
9. Surface modification of electrospun PLLA nanofibers by plasma treatment and cationized gelatin immobilization for cartilage tissue engineering. Chen JP; Su CH Acta Biomater; 2011 Jan; 7(1):234-43. PubMed ID: 20728584 [TBL] [Abstract][Full Text] [Related]
10. Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Ma Z; Gao C; Gong Y; Shen J Biomaterials; 2005 Apr; 26(11):1253-9. PubMed ID: 15475055 [TBL] [Abstract][Full Text] [Related]
11. Composite poly(l-lactic-acid)/silk fibroin scaffold prepared by electrospinning promotes chondrogenesis for cartilage tissue engineering. Li Z; Liu P; Yang T; Sun Y; You Q; Li J; Wang Z; Han B J Biomater Appl; 2016 May; 30(10):1552-65. PubMed ID: 27059497 [TBL] [Abstract][Full Text] [Related]
12. Paraffin spheres as porogen to fabricate poly(L-lactic acid) scaffolds with improved cytocompatibility for cartilage tissue engineering. Ma Z; Gao C; Gong Y; Shen J J Biomed Mater Res B Appl Biomater; 2003 Oct; 67(1):610-7. PubMed ID: 14528458 [TBL] [Abstract][Full Text] [Related]
13. The effects of lactate and acid on articular chondrocytes function: Implications for polymeric cartilage scaffold design. Zhang X; Wu Y; Pan Z; Sun H; Wang J; Yu D; Zhu S; Dai J; Chen Y; Tian N; Heng BC; Coen ND; Xu H; Ouyang H Acta Biomater; 2016 Sep; 42():329-340. PubMed ID: 27345139 [TBL] [Abstract][Full Text] [Related]
14. Thermally produced biodegradable scaffolds for cartilage tissue engineering. Lee SH; Kim BS; Kim SH; Kang SW; Kim YH Macromol Biosci; 2004 Aug; 4(8):802-10. PubMed ID: 15468274 [TBL] [Abstract][Full Text] [Related]
15. A new biodegradable polyester elastomer for cartilage tissue engineering. Kang Y; Yang J; Khan S; Anissian L; Ameer GA J Biomed Mater Res A; 2006 May; 77(2):331-9. PubMed ID: 16404714 [TBL] [Abstract][Full Text] [Related]
16. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts. Park K; Ju YM; Son JS; Ahn KD; Han DK J Biomater Sci Polym Ed; 2007; 18(4):369-82. PubMed ID: 17540114 [TBL] [Abstract][Full Text] [Related]
17. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
18. Human nasoseptal chondrocytes maintain their differentiated phenotype on PLLA scaffolds produced by thermally induced phase separation and supplemented with bioactive glass 1393. Conoscenti G; Carfì Pavia F; Ongaro A; Brucato V; Goegele C; Schwarz S; Boccaccini AR; Stoelzel K; La Carrubba V; Schulze-Tanzil G Connect Tissue Res; 2019 Jul; 60(4):344-357. PubMed ID: 30348015 [TBL] [Abstract][Full Text] [Related]
19. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988 [TBL] [Abstract][Full Text] [Related]
20. Biomimetic porous scaffolds made from poly(L-lactide)-g-chondroitin sulfate blend with poly(L-lactide) for cartilage tissue engineering. Lee CT; Huang CP; Lee YD Biomacromolecules; 2006 Jul; 7(7):2200-9. PubMed ID: 16827588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]