BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 1913325)

  • 1. Inhibition of the acetylcholine-induced relaxation of canine isolated basilar artery by potassium-conductance blockers.
    Elliott DA; Gu M; Ong BY; Bose D
    Can J Physiol Pharmacol; 1991 Jun; 69(6):786-91. PubMed ID: 1913325
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential effects of acetylcholine, nitric oxide and levcromakalim on smooth muscle membrane potential and tone in the rabbit basilar artery.
    Plane F; Garland CJ
    Br J Pharmacol; 1993 Oct; 110(2):651-6. PubMed ID: 8242238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smooth muscle membrane potential modulates endothelium-dependent relaxation of rat basilar artery via myo-endothelial gap junctions.
    Allen T; Iftinca M; Cole WC; Plane F
    J Physiol; 2002 Dec; 545(3):975-86. PubMed ID: 12482900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of volatile anesthetics on acetylcholine-induced relaxation in the rabbit mesenteric resistance artery.
    Akata T; Nakashima M; Kodama K; Boyle WA; Takahashi S
    Anesthesiology; 1995 Jan; 82(1):188-204. PubMed ID: 7832300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries.
    Prieto D; Simonsen U; Hernández M; García-Sacristán A
    Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors inducing endothelium-dependent relaxation in the guinea-pig basilar artery as estimated from the actions of haemoglobin.
    Nishiye E; Nakao K; Itoh T; Kuriyama H
    Br J Pharmacol; 1989 Mar; 96(3):645-55. PubMed ID: 2785833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potassium channel-mediated relaxation to acetylcholine in rabbit arteries.
    Cowan CL; Palacino JJ; Najibi S; Cohen RA
    J Pharmacol Exp Ther; 1993 Sep; 266(3):1482-9. PubMed ID: 8396636
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetylcholine-induced endothelium-independent relaxations in monkey isolated superior and inferior caval veins.
    Fukushima S; Ohhashi T
    Br J Pharmacol; 1993 Aug; 109(4):992-7. PubMed ID: 8401953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelium-dependent relaxation to acetylcholine in the rabbit basilar artery: importance of membrane hyperpolarization.
    Rand VE; Garland CJ
    Br J Pharmacol; 1992 May; 106(1):143-50. PubMed ID: 1380379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Smooth muscle hyperpolarization and relaxation to acetylcholine in the rabbit basilar artery.
    Plane F; Garland CJ
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S15-8. PubMed ID: 7836673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-dependent hyperpolarization of canine coronary smooth muscle.
    Feletou M; Vanhoutte PM
    Br J Pharmacol; 1988 Mar; 93(3):515-24. PubMed ID: 2453240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of potassium channels in endothelium-dependent relaxation resistant to nitroarginine in the rat hepatic artery.
    Zygmunt PM; Högestätt ED
    Br J Pharmacol; 1996 Apr; 117(7):1600-6. PubMed ID: 8730760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of K+ channels in augmented relaxations to sodium nitroprusside induced by mexiletine in rat aortas.
    Kinoshita H; Ishikawa T; Hatano Y
    Anesthesiology; 2000 Mar; 92(3):813-20. PubMed ID: 10719960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of potassium channels in relaxations of canine middle cerebral arteries induced by nitric oxide donors.
    Onoue H; Katusic ZS
    Stroke; 1997 Jun; 28(6):1264-70; discussion 1270-1. PubMed ID: 9183360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide.
    Sobey CG; Faraci FM
    Br J Pharmacol; 1999 Mar; 126(6):1437-43. PubMed ID: 10217538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation of subarachnoid hemorrhage-induced spasm of rabbit basilar artery by the K+ channel activator cromakalim.
    Zuccarello M; Bonasso CL; Lewis AI; Sperelakis N; Rapoport RM
    Stroke; 1996 Feb; 27(2):311-6. PubMed ID: 8571429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of relaxation responses of vascular and non-vascular smooth muscle to endothelium-derived relaxing factor (EDRF), acidified sodium nitrite (NO) and sodium nitroprusside.
    Cocks TM; Angus JA
    Naunyn Schmiedebergs Arch Pharmacol; 1990 Apr; 341(4):364-72. PubMed ID: 2333103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of acetylcholine-induced relaxation of rabbit isolated middle cerebral artery: effects of inhibitors of nitric oxide synthesis, Na,K-ATPase, and ATP-sensitive K channels.
    Parsons AA; Schilling L; Wahl M
    J Cereb Blood Flow Metab; 1991 Jul; 11(4):700-4. PubMed ID: 1646828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.