These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19133269)

  • 1. A circadian system is involved in photoperiodic entrainment of the circannual rhythm of Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    J Insect Physiol; 2009 May; 55(5):494-8. PubMed ID: 19133269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small geographic variation in photoperiodic entrainment of the circannual rhythm in the varied carpet beetle, Anthrenus verbasci.
    Matsuno T; Kawasaki Y; Numata H
    Zoolog Sci; 2013 Apr; 30(4):304-10. PubMed ID: 23537241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A phase response curve for circannual rhythm in the varied carpet beetle Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2005 Oct; 191(10):883-7. PubMed ID: 16041605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endogenous timing mechanism controlling the circannual pupation rhythm of the varied carpet beetle Anthrenus verbasci.
    Nisimura T; Numata H
    J Comp Physiol A; 2001 Jul; 187(6):433-40. PubMed ID: 11548990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Responsiveness to photoperiodic changes in the circannual rhythm of the varied carpet beetle, Anthrenus verbasci.
    Miyazaki Y; Numata H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Mar; 195(3):241-6. PubMed ID: 19093124
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase responses in the circannual rhythm of the varied carpet beetle, Anthrenus verbasci, under naturally changing day length.
    Miyazaki Y; Nisimura T; Numata H
    Zoolog Sci; 2006 Nov; 23(11):1031-7. PubMed ID: 17189916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diapause induction and clock mechanism in the cabbage beetle, Colaphellus bowringi (Coleoptera: Chrysomelidae).
    Wang X; Ge F; Xue F; You L
    J Insect Physiol; 2004 May; 50(5):373-81. PubMed ID: 15121450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Circannual rhythm in the varied carpet beetle, Anthrenus verbasci.
    Miyazaki Y; Nisimura T; Numata H
    Prog Brain Res; 2012; 199():439-456. PubMed ID: 22877680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase resetting and phase singularity of an insect circannual oscillator.
    Miyazaki Y; Nisimura T; Numata H
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2007 Nov; 193(11):1169-76. PubMed ID: 17882435
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoperiodism of diapause induction in Thyrassia penangae (Lepidoptera: Zygaenidae).
    He HM; Xian ZH; Huang F; Liu XP; Xue FS
    J Insect Physiol; 2009 Nov; 55(11):1003-8. PubMed ID: 19619555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circannual phase response curves to short and long photoperiod in the European hamster.
    Monecke S; Saboureau M; Malan A; Bonn D; Masson-Pévet M; Pévet P
    J Biol Rhythms; 2009 Oct; 24(5):413-26. PubMed ID: 19755586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insect photoperiodism: measuring the night.
    Saunders DS
    J Insect Physiol; 2013 Jan; 59(1):1-10. PubMed ID: 23183333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circadian rhythms are not involved in the regulation of circannual reproductive cycles in a sub-tropical bird, the spotted munia.
    Budki P; Malik S; Rani S; Kumar V
    J Exp Biol; 2014 Jul; 217(Pt 14):2569-79. PubMed ID: 24803462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric control of short day response in European hamsters.
    Monecke S; Malan A; Wollnik F
    J Biol Rhythms; 2006 Aug; 21(4):290-300. PubMed ID: 16864649
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoperiodic ovarian response in yellow-throated sparrow, Gymnorhis xanthocollis: involvement of circadian rhythm.
    Dixit AS; Tewary PD
    Acta Physiol Hung; 1989; 73(4):455-60. PubMed ID: 2589084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photic entrainment is altered in the 5-HT1B receptor knockout mouse.
    Sollars PJ; Ogilvie MD; Simpson AM; Pickard GE
    J Biol Rhythms; 2006 Feb; 21(1):21-32. PubMed ID: 16461982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of photophase and altitude on oviposition rhythm of the himalayan strains of Drosophila ananassae.
    Satralkar MK; Khare PV; Keny VL; Chhakchhuak V; Kasture MS; Shivagaje AJ; Iyyer SB; Barnabas RJ; Joshi DS
    Chronobiol Int; 2007; 24(3):389-405. PubMed ID: 17612939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative short-day photoperiodic response in larval development and its adaptive significance in an adult-overwintering cerambycid beetle, Phytoecia rufiventris.
    Shintani Y
    J Insect Physiol; 2011 Jul; 57(7):1053-9. PubMed ID: 21616076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Circadian rhythm of the dropping of engorged larvae in 2 species of ixodid ticks (Ixodidae) and its photoperiodic entrainment].
    Belozerov VN; Kruchinina LV
    Parazitologiia; 1979; 13(3):204-11. PubMed ID: 440776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scotopic illumination enhances entrainment of circadian rhythms to lengthening light:dark cycles.
    Gorman MR; Kendall M; Elliott JA
    J Biol Rhythms; 2005 Feb; 20(1):38-48. PubMed ID: 15654069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.