These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1270 related articles for article (PubMed ID: 19133311)

  • 1. Protective role of arjunolic acid in response to streptozotocin-induced type-I diabetes via the mitochondrial dependent and independent pathways.
    Manna P; Sinha M; Sil PC
    Toxicology; 2009 Mar; 257(1-2):53-63. PubMed ID: 19133311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptozotocin induced activation of oxidative stress responsive splenic cell signaling pathways: protective role of arjunolic acid.
    Manna P; Ghosh J; Das J; Sil PC
    Toxicol Appl Pharmacol; 2010 Apr; 244(2):114-29. PubMed ID: 20053369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impaired redox signaling and mitochondrial uncoupling contributes vascular inflammation and cardiac dysfunction in type 1 diabetes: Protective role of arjunolic acid.
    Manna P; Sil PC
    Biochimie; 2012 Mar; 94(3):786-97. PubMed ID: 22155371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prophylactic role of arjunolic acid in response to streptozotocin mediated diabetic renal injury: activation of polyol pathway and oxidative stress responsive signaling cascades.
    Manna P; Sinha M; Sil PC
    Chem Biol Interact; 2009 Oct; 181(3):297-308. PubMed ID: 19682444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Taurine protects rat testes against NaAsO(2)-induced oxidative stress and apoptosis via mitochondrial dependent and independent pathways.
    Das J; Ghosh J; Manna P; Sinha M; Sil PC
    Toxicol Lett; 2009 Jun; 187(3):201-10. PubMed ID: 19429265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of type 1 diabetes to rat liver dysfunction and cellular damage via activation of NOS, PARP, IkappaBalpha/NF-kappaB, MAPKs, and mitochondria-dependent pathways: Prophylactic role of arjunolic acid.
    Manna P; Das J; Ghosh J; Sil PC
    Free Radic Biol Med; 2010 Jun; 48(11):1465-84. PubMed ID: 20188823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells.
    Ou HC; Chou FP; Sheu WH; Hsu SL; Lee WJ
    Arch Toxicol; 2007 Jun; 81(6):421-32. PubMed ID: 17216433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species.
    Jin S; Ray RM; Johnson LR
    Am J Physiol Gastrointest Liver Physiol; 2008 Apr; 294(4):G928-37. PubMed ID: 18218673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gambogenic acid induced mitochondrial-dependent apoptosis and referred to phospho-Erk1/2 and phospho-p38 MAPK in human hepatoma HepG2 cells.
    Yan F; Wang M; Li J; Cheng H; Su J; Wang X; Wu H; Xia L; Li X; Chang HC; Li Q
    Environ Toxicol Pharmacol; 2012 Mar; 33(2):181-90. PubMed ID: 22222560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prophylactic role of taurine on arsenic mediated oxidative renal dysfunction via MAPKs/ NF-kappaB and mitochondria dependent pathways.
    Roy A; Manna P; Sil PC
    Free Radic Res; 2009 Oct; 43(10):995-1007. PubMed ID: 19672740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of oxidative stress-mediated ERK1/2 and p38 activation regulated mitochondria-dependent apoptotic signals in methylmercury-induced neuronal cell injury.
    Lu TH; Hsieh SY; Yen CC; Wu HC; Chen KL; Hung DZ; Chen CH; Wu CC; Su YC; Chen YW; Liu SH; Huang CF
    Toxicol Lett; 2011 Jul; 204(1):71-80. PubMed ID: 21549813
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction of oxidative stress by a new low-molecular-weight antioxidant improves metabolic alterations in a nonobese mouse diabetes model.
    Novelli M; D'Aleo V; Lupi R; Paolini M; Soleti A; Marchetti P; Masiello P
    Pancreas; 2007 Nov; 35(4):e10-7. PubMed ID: 18090226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetaminophen induced renal injury via oxidative stress and TNF-alpha production: therapeutic potential of arjunolic acid.
    Ghosh J; Das J; Manna P; Sil PC
    Toxicology; 2010 Jan; 268(1-2):8-18. PubMed ID: 19922764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protective role of a coumarin-derived schiff base scaffold against tertiary butyl hydroperoxide (TBHP)-induced oxidative impairment and cell death via MAPKs, NF-κB and mitochondria-dependent pathways.
    Ghosh M; Manna P; Sil PC
    Free Radic Res; 2011 May; 45(5):620-37. PubMed ID: 21391895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustained versus transient ERK1/2 signaling underlies the anti- and proapoptotic effects of oxidative stress in human RPE cells.
    Glotin AL; Calipel A; Brossas JY; Faussat AM; Tréton J; Mascarelli F
    Invest Ophthalmol Vis Sci; 2006 Oct; 47(10):4614-23. PubMed ID: 17003459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway.
    Ghosh J; Das J; Manna P; Sil PC
    Toxicol Appl Pharmacol; 2009 Oct; 240(1):73-87. PubMed ID: 19616567
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetoacetate activation of extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase in primary cultured rat hepatocytes: role of oxidative stress.
    Abdelmegeed MA; Kim SK; Woodcroft KJ; Novak RF
    J Pharmacol Exp Ther; 2004 Aug; 310(2):728-36. PubMed ID: 15051799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic β-cells from apoptosis via mitochondrial dependent pathway.
    Bhattacharya S; Manna P; Gachhui R; Sil PC
    Toxicol Appl Pharmacol; 2011 Dec; 257(2):272-83. PubMed ID: 21982801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein kinase C-ERK1/2 signal pathway switches glucose depletion-induced necrosis to apoptosis by regulating superoxide dismutases and suppressing reactive oxygen species production in A549 lung cancer cells.
    Kim CH; Han SI; Lee SY; Youk HS; Moon JY; Duong HQ; Park MJ; Joo YM; Park HG; Kim YJ; Yoo MA; Lim SC; Kang HS
    J Cell Physiol; 2007 May; 211(2):371-85. PubMed ID: 17309078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial reactive oxygen species regulate the temporal activation of nuclear factor kappaB to modulate tumour necrosis factor-induced apoptosis: evidence from mitochondria-targeted antioxidants.
    Hughes G; Murphy MP; Ledgerwood EC
    Biochem J; 2005 Jul; 389(Pt 1):83-9. PubMed ID: 15727562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 64.