BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19133840)

  • 1. The origin, evolution and structure of the protein world.
    Caetano-Anollés G; Wang M; Caetano-Anollés D; Mittenthal JE
    Biochem J; 2009 Feb; 417(3):621-37. PubMed ID: 19133840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolutionary mechanics of domain organization in proteomes and the rise of modularity in the protein world.
    Wang M; Caetano-Anollés G
    Structure; 2009 Jan; 17(1):66-78. PubMed ID: 19141283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The origin and evolution of modern metabolism.
    Caetano-Anollés G; Yafremava LS; Gee H; Caetano-Anollés D; Kim HS; Mittenthal JE
    Int J Biochem Cell Biol; 2009 Feb; 41(2):285-97. PubMed ID: 18790074
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins and evolution of modern biochemistry: insights from genomes and molecular structure.
    Caetano-Anolles G; Sun FJ; Wang M; Yafremava LS; Harish A; Kim HS; Knudsen V; Caetano-Anolles D; Mittenthal JE
    Front Biosci; 2008 May; 13():5212-40. PubMed ID: 18508583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal molecular clock of protein folds and its power in tracing the early history of aerobic metabolism and planet oxygenation.
    Wang M; Jiang YY; Kim KM; Qu G; Ji HF; Mittenthal JE; Zhang HY; Caetano-Anollés G
    Mol Biol Evol; 2011 Jan; 28(1):567-82. PubMed ID: 20805191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The origin of modern metabolic networks inferred from phylogenomic analysis of protein architecture.
    Caetano-Anollés G; Kim HS; Mittenthal JE
    Proc Natl Acad Sci U S A; 2007 May; 104(22):9358-63. PubMed ID: 17517598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Emergence and evolution of modern molecular functions inferred from phylogenomic analysis of ontological data.
    Kim KM; Caetano-Anollés G
    Mol Biol Evol; 2010 Jul; 27(7):1710-33. PubMed ID: 20418223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen.
    Kim KM; Qin T; Jiang YY; Chen LL; Xiong M; Caetano-Anollés D; Zhang HY; Caetano-Anollés G
    Structure; 2012 Jan; 20(1):67-76. PubMed ID: 22244756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein folds, functions and evolution.
    Thornton JM; Orengo CA; Todd AE; Pearl FM
    J Mol Biol; 1999 Oct; 293(2):333-42. PubMed ID: 10529349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Origin and evolution of protein fold designs inferred from phylogenomic analysis of CATH domain structures in proteomes.
    Bukhari SA; Caetano-Anollés G
    PLoS Comput Biol; 2013; 9(3):e1003009. PubMed ID: 23555236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons.
    Bujnicki JM
    Acta Biochim Pol; 2001; 48(4):935-67. PubMed ID: 11996004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms.
    Kim KM; Caetano-Anollés G
    BMC Evol Biol; 2012 Jan; 12():13. PubMed ID: 22284070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proteome evolution and the metabolic origins of translation and cellular life.
    Caetano-Anollés D; Kim KM; Mittenthal JE; Caetano-Anollés G
    J Mol Evol; 2011 Jan; 72(1):14-33. PubMed ID: 21082171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prokaryotic phylogenies inferred from protein structural domains.
    Deeds EJ; Hennessey H; Shakhnovich EI
    Genome Res; 2005 Mar; 15(3):393-402. PubMed ID: 15741510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A biological cosmos of parallel universes: does protein structural plasticity facilitate evolution?
    Meier S; Ozbek S
    Bioessays; 2007 Nov; 29(11):1095-104. PubMed ID: 17935152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The coevolutionary roots of biochemistry and cellular organization challenge the RNA world paradigm.
    Caetano-Anollés G; Seufferheld MJ
    J Mol Microbiol Biotechnol; 2013; 23(1-2):152-77. PubMed ID: 23615203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global phylogeny determined by the combination of protein domains in proteomes.
    Wang M; Caetano-Anollés G
    Mol Biol Evol; 2006 Dec; 23(12):2444-54. PubMed ID: 16971695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of the betagamma lens crystallin superfamily: evidence for a retained ancestral function in gamma N crystallins?
    Weadick CJ; Chang BS
    Mol Biol Evol; 2009 May; 26(5):1127-42. PubMed ID: 19233964
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world.
    Wang M; Yafremava LS; Caetano-Anollés D; Mittenthal JE; Caetano-Anollés G
    Genome Res; 2007 Nov; 17(11):1572-85. PubMed ID: 17908824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic unstructuredness and abundance of PEST motifs in eukaryotic proteomes.
    Singh GP; Ganapathi M; Sandhu KS; Dash D
    Proteins; 2006 Feb; 62(2):309-15. PubMed ID: 16299712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.