These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19134473)

  • 1. Monitoring of an RNA multistep folding pathway by isothermal titration calorimetry.
    Reymond C; Bisaillon M; Perreault JP
    Biophys J; 2009 Jan; 96(1):132-40. PubMed ID: 19134473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isothermal Titration Calorimetry Measurements of Riboswitch-Ligand Interactions.
    Jones CP; Piszczek G; Ferré-D'Amaré AR
    Methods Mol Biol; 2019; 1964():75-87. PubMed ID: 30929236
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of ion-induced RNA folding in the hammerhead ribozyme: an isothermal titration calorimetric study.
    Hammann C; Cooper A; Lilley DM
    Biochemistry; 2001 Feb; 40(5):1423-9. PubMed ID: 11170470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entropy-driven folding of an RNA helical junction: an isothermal titration calorimetric analysis of the hammerhead ribozyme.
    Mikulecky PJ; Takach JC; Feig AL
    Biochemistry; 2004 May; 43(19):5870-81. PubMed ID: 15134461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tertiary interactions with the internal guide sequence mediate docking of the P1 helix into the catalytic core of the Tetrahymena ribozyme.
    Strobel SA; Cech TR
    Biochemistry; 1993 Dec; 32(49):13593-604. PubMed ID: 7504953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The folding pathway of the genomic hepatitis delta virus ribozyme is dominated by slow folding of the pseudoknots.
    Chadalavada DM; Senchak SE; Bevilacqua PC
    J Mol Biol; 2002 Apr; 317(4):559-75. PubMed ID: 11955009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a local folding event of the Tetrahymena group I ribozyme: effects of oligonucleotide substrate length, pH, and temperature on the two substrate binding steps.
    Narlikar GJ; Bartley LE; Khosla M; Herschlag D
    Biochemistry; 1999 Oct; 38(43):14192-204. PubMed ID: 10571993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unraveling the thermodynamics and kinetics of RNA assembly: surface plasmon resonance, isothermal titration calorimetry, and circular dichroism.
    Hoogstraten CG; Sumita M; White NA
    Methods Enzymol; 2014; 549():407-32. PubMed ID: 25432758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of RNA folding and ligand binding by conventional and high-throughput calorimetry.
    Sokoloski JE; Bevilacqua PC
    Methods Mol Biol; 2012; 905():145-74. PubMed ID: 22736003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tertiary interactions determine the accuracy of RNA folding.
    Chauhan S; Woodson SA
    J Am Chem Soc; 2008 Jan; 130(4):1296-303. PubMed ID: 18179212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of the P1.1 pseudoknot is critical for both the cleavage activity and substrate specificity of an antigenomic trans-acting hepatitis delta ribozyme.
    Deschênes P; Ouellet J; Perreault J; Perreault JP
    Nucleic Acids Res; 2003 Apr; 31(8):2087-96. PubMed ID: 12682359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a highly reactive HDV ribozyme sequence uncovers facilitation of RNA folding by alternative pairings and physiological ionic strength.
    Brown TS; Chadalavada DM; Bevilacqua PC
    J Mol Biol; 2004 Aug; 341(3):695-712. PubMed ID: 15288780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of the antigenomic trans-acting delta ribozyme: the alterations of the middle nucleotides located on the P1 stem.
    Ananvoranich S; Lafontaine DA; Perreault JP
    Nucleic Acids Res; 1999 Mar; 27(6):1473-9. PubMed ID: 10037808
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isothermal Titration Calorimetry: Assisted Crystallization of RNA-Ligand Complexes.
    Da Veiga C; Mezher J; Dumas P; Ennifar E
    Methods Mol Biol; 2016; 1320():127-43. PubMed ID: 26227041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Examination of the folding pathway of the antigenomic hepatitis delta virus ribozyme reveals key interactions of the L3 loop.
    Reymond C; Ouellet J; Bisaillon M; Perreault JP
    RNA; 2007 Jan; 13(1):44-54. PubMed ID: 17105991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics and kinetics of RNA tertiary structure formation in the junctionless hairpin ribozyme.
    White NA; Hoogstraten CG
    Biophys Chem; 2017 Sep; 228():62-68. PubMed ID: 28710920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics and folding pathway of tetraloop receptor-mediated RNA helical packing.
    Vander Meulen KA; Davis JH; Foster TR; Record MT; Butcher SE
    J Mol Biol; 2008 Dec; 384(3):702-17. PubMed ID: 18845162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics and kinetics of the hairpin ribozyme from atomistic folding/unfolding simulations.
    Nivón LG; Shakhnovich EI
    J Mol Biol; 2011 Sep; 411(5):1128-44. PubMed ID: 21740912
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic partitioning mechanism of HDV ribozyme folding.
    Chen J; Gong S; Wang Y; Zhang W
    J Chem Phys; 2014 Jan; 140(2):025102. PubMed ID: 24437918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
    Zhang L; Xiao M; Lu C; Zhang Y
    RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.