These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 19134545)

  • 1. Monitoring tissue engineering using magnetic resonance imaging.
    Xu H; Othman SF; Magin RL
    J Biosci Bioeng; 2008 Dec; 106(6):515-27. PubMed ID: 19134545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic resonance microscopy for monitoring osteogenesis in tissue-engineered construct in vitro.
    Xu H; Othman SF; Hong L; Peptan IA; Magin RL
    Phys Med Biol; 2006 Feb; 51(3):719-32. PubMed ID: 16424591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of scaffolds for tissue engineering by benchtop-magnetic resonance imaging.
    Nitzsche H; Metz H; Lochmann A; Bernstein A; Hause G; Groth T; Mäder K
    Tissue Eng Part C Methods; 2009 Sep; 15(3):513-21. PubMed ID: 19191523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative magnetic resonance imaging assessment of matrix development in cell-seeded natural urinary bladder smooth muscle tissue-engineered constructs.
    Cheng HL; Islam SS; Loai Y; Antoon R; Beaumont M; Farhat WA
    Tissue Eng Part C Methods; 2010 Aug; 16(4):643-51. PubMed ID: 19772478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monitoring tissue development in acellular matrix-based regeneration for bladder tissue engineering: multiexponential diffusion and T2* for improved specificity.
    Cheng HL; Loai Y; Farhat WA
    NMR Biomed; 2012 Mar; 25(3):418-26. PubMed ID: 22351641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of noninvasive evaluation of biophysical properties of tissue-engineered cartilage by using quantitative MRI.
    Miyata S; Numano T; Homma K; Tateishi T; Ushida T
    J Biomech; 2007; 40(13):2990-8. PubMed ID: 17442320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MR elastography monitoring of tissue-engineered constructs.
    Othman SF; Curtis ET; Plautz SA; Pannier AK; Butler SD; Xu H
    NMR Biomed; 2012 Mar; 25(3):452-63. PubMed ID: 21387443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular magnetic resonance imaging using superparamagnetic anionic iron oxide nanoparticles: applications to in vivo trafficking of lymphocytes and cell-based anticancer therapy.
    Smirnov P
    Methods Mol Biol; 2009; 512():333-53. PubMed ID: 19347287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI monitoring of cartilage repair in the knee: a review.
    Domayer SE; Welsch GH; Dorotka R; Mamisch TC; Marlovits S; Szomolanyi P; Trattnig S
    Semin Musculoskelet Radiol; 2008 Dec; 12(4):302-17. PubMed ID: 19016394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic resonance imaging for diagnosis and assessment of cartilage defect repairs.
    Marlovits S; Mamisch TC; Vekszler G; Resinger C; Trattnig S
    Injury; 2008 Apr; 39 Suppl 1():S13-25. PubMed ID: 18313468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic contrast-enhanced magnetic resonance imaging in the evaluation of the prostate.
    Bonekamp D; Macura KJ
    Top Magn Reson Imaging; 2008 Dec; 19(6):273-84. PubMed ID: 19512849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional magnetic resonance observation of cartilage repair tissue (MOCART) score assessed with an isotropic three-dimensional true fast imaging with steady-state precession sequence at 3.0 Tesla.
    Welsch GH; Zak L; Mamisch TC; Resinger C; Marlovits S; Trattnig S
    Invest Radiol; 2009 Sep; 44(9):603-12. PubMed ID: 19692843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional and molecular MR imaging of angiogenesis: seeing the target, seeing it work.
    Neeman M
    J Cell Biochem Suppl; 2002; 39():11-7. PubMed ID: 12552597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo monitoring of apoptosis.
    Brauer M
    Prog Neuropsychopharmacol Biol Psychiatry; 2003 Apr; 27(2):323-31. PubMed ID: 12657370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative magnetic resonance imaging of subcutaneous adipose tissue.
    Gensanne D; Josse G; Theunis J; Lagarde JM; Vincensini D
    Skin Res Technol; 2009 Feb; 15(1):45-50. PubMed ID: 19152578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-dimensional and three-dimensional time-lapse microscopic magnetic resonance imaging of Xenopus gastrulation movements using intrinsic tissue-specific contrast.
    Papan C; Boulat B; Velan SS; Fraser SE; Jacobs RE
    Dev Dyn; 2007 Feb; 236(2):494-501. PubMed ID: 17191224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications.
    Aime S; Castelli DD; Crich SG; Gianolio E; Terreno E
    Acc Chem Res; 2009 Jul; 42(7):822-31. PubMed ID: 19534516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance characterization of tissue engineered cartilage via changes in relaxation times, diffusion coefficient, and shear modulus.
    Yin Z
    Crit Rev Biomed Eng; 2014; 42(2):137-91. PubMed ID: 25403876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acellular matrix (ACM) for bladder tissue engineering: A quantitative magnetic resonance imaging study.
    Cheng HL; Loai Y; Beaumont M; Farhat WA
    Magn Reson Med; 2010 Aug; 64(2):341-8. PubMed ID: 20665777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 11.7 Tesla magnetic resonance microimaging of laryngeal tissue architecture.
    Herrera VL; Viereck JC; Lopez-Guerra G; Kumai Y; Kobler J; Karajanagi S; Park H; Hillman R; Zeitels SM
    Laryngoscope; 2009 Nov; 119(11):2187-94. PubMed ID: 19824052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.