BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19135084)

  • 1. Quantitative microdialysis using modified ultraslow microdialysis: direct rapid and reliable determination of free brain concentrations with the MetaQuant technique.
    Cremers TI; de Vries MG; Huinink KD; van Loon JP; v d Hart M; Ebert B; Westerink BH; De Lange EC
    J Neurosci Methods; 2009 Apr; 178(2):249-54. PubMed ID: 19135084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microdialysis as a tool to determine free kidney levels of voriconazole in rodents: a model to study the technique feasibility for a moderately lipophilic drug.
    Araujo BV; Silva CF; Haas SE; Dalla Costa T
    J Pharm Biomed Anal; 2008 Aug; 47(4-5):876-81. PubMed ID: 18395391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of in vitro and in vivo recovery of sinomenine using microdialysis.
    Zheng H; Shi LF; Hu JH
    Skin Res Technol; 2007 Aug; 13(3):323-9. PubMed ID: 17610655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urea as a recovery marker for quantitative assessment of tumor interstitial solutes with microdialysis.
    Ettinger SN; Poellmann CC; Wisniewski NA; Gaskin AA; Shoemaker JS; Poulson JM; Dewhirst MW; Klitzman B
    Cancer Res; 2001 Nov; 61(21):7964-70. PubMed ID: 11691820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo determination of extracellular brain ascorbate.
    Miele M; Fillenz M
    J Neurosci Methods; 1996 Dec; 70(1):15-9. PubMed ID: 8982976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasma and CNS concentrations of Gaboxadol in rats following subcutaneous administration.
    Cremers T; Ebert B
    Eur J Pharmacol; 2007 May; 562(1-2):47-52. PubMed ID: 17362924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of metaquant microdialysis for measurement of absolute concentrations of amphetamine and dopamine in brain: a viable method for assessing pharmacokinetic profile of drugs in the brain.
    Sood P; Cole S; Fraier D; Young AM
    J Neurosci Methods; 2009 Dec; 185(1):39-44. PubMed ID: 19747947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo time-course changes in ethanol levels sampled with subcutaneous microdialysis.
    Engleman EA; Ingraham CM; Franklin KM; Keith CM; McClaren JA; Schultz JA; Morzorati SL; O'Connor S; Thielen RJ; Murphy JM; McBride WJ
    Alcohol Clin Exp Res; 2008 Mar; 32(3):435-42. PubMed ID: 18215218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultraslow microdialysis and microfiltration for in-line, on-line and off-line monitoring.
    Korf J; Huinink KD; Posthuma-Trumpie GA
    Trends Biotechnol; 2010 Mar; 28(3):150-8. PubMed ID: 20079945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo monitoring of multiple trace metals in the brain extracellular fluid of anesthetized rats by microdialysis-membrane desalter-ICPMS.
    Chung YT; Ling YC; Yang CS; Sun YC; Lee PL; Lin CY; Hong CC; Yang MH
    Anal Chem; 2007 Dec; 79(23):8900-10. PubMed ID: 17973459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo and in vitro microdialysis sampling of free fatty acids.
    Jensen SM; Hansen HS; Johansen T; Malmlöf K
    J Pharm Biomed Anal; 2007 Apr; 43(5):1751-6. PubMed ID: 17240099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraperitoneal zinc administration increases extracellular zinc in the rat prefrontal cortex.
    Opoka W; Sowa-Kućma M; Kowalska M; Baś B; Gołembiowska K; Nowak G
    J Physiol Pharmacol; 2008 Sep; 59(3):477-87. PubMed ID: 18953091
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excised porcine skin experimental systems to validate quantitative microdialysis methods for determination of drugs in skin after topical application.
    Seki T; Wang A; Yuan D; Saso Y; Hosoya O; Chono S; Morimoto K
    J Control Release; 2004 Nov; 100(2):181-9. PubMed ID: 15544866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds.
    Alavijeh MS; Palmer AM
    Neurobiol Dis; 2010 Jan; 37(1):38-47. PubMed ID: 19818851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An assessment of calibration and performance of the microdialysis system.
    Abrahamsson P; Winsö O
    J Pharm Biomed Anal; 2005 Sep; 39(3-4):730-4. PubMed ID: 15939565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of mass spectrometry into early-phase discovery and development of central nervous system agents.
    Prokai L; Zharikova A; Janáky T; Li X; Braddy AC; Perjési P; Matveeva L; Powell DH; Prokai-Tatrai K
    J Mass Spectrom; 2001 Nov; 36(11):1211-9. PubMed ID: 11747117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdialysis evaluation of atomoxetine brain penetration and central nervous system pharmacokinetics in rats.
    Kielbasa W; Kalvass JC; Stratford R
    Drug Metab Dispos; 2009 Jan; 37(1):137-42. PubMed ID: 18936112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative approaches to in vivo brain microdialysis.
    Parsons LH; Justice JB
    Crit Rev Neurobiol; 1994; 8(3):189-220. PubMed ID: 7923396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cutaneous microdialysis. Methodology and validation.
    Groth L
    Acta Derm Venereol Suppl (Stockh); 1996; 197():1-61. PubMed ID: 8982432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of tissue trauma on the characteristics of microdialysis zero-net-flux method sampling neurotransmitters.
    Chen KC
    J Theor Biol; 2006 Feb; 238(4):863-81. PubMed ID: 16129452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.