These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 19135201)

  • 1. A micromechanical model to predict damage and failure in biological tissues. Application to the ligament-to-bone attachment in the human knee joint.
    Subit D; Chabrand P; Masson C
    J Biomech; 2009 Feb; 42(3):261-5. PubMed ID: 19135201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional finite element modeling of ligaments: technical aspects.
    Weiss JA; Gardiner JC; Ellis BJ; Lujan TJ; Phatak NS
    Med Eng Phys; 2005 Dec; 27(10):845-61. PubMed ID: 16085446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of the rabbit knee and ankle: muscle, ligament, and joint contact force predictions.
    Grover DM; Chen AA; Hazelwood SJ
    J Biomech; 2007; 40(12):2816-21. PubMed ID: 17353018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The femur as a musculo-skeletal construct: a free boundary condition modelling approach.
    Phillips AT
    Med Eng Phys; 2009 Jul; 31(6):673-80. PubMed ID: 19201245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool.
    Fernandez JW; Hunter PJ
    Biomech Model Mechanobiol; 2005 Aug; 4(1):20-38. PubMed ID: 15959816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure of the ligament-to-bone attachment complex in the human knee joint.
    Subit D; Masson C; Brunet C; Chabrand P
    J Mech Behav Biomed Mater; 2008 Oct; 1(4):360-7. PubMed ID: 19627801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive determination of ligament strain with deformable image registration.
    Phatak NS; Sun Q; Kim SE; Parker DL; Sanders RK; Veress AI; Ellis BJ; Weiss JA
    Ann Biomed Eng; 2007 Jul; 35(7):1175-87. PubMed ID: 17394084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-evaluating the toughness of human cortical bone.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Bone; 2006 Jun; 38(6):878-87. PubMed ID: 16338188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patellar tendon strain is increased at the site of the jumper's knee lesion during knee flexion and tendon loading: results and cadaveric testing of a computational model.
    Lavagnino M; Arnoczky SP; Elvin N; Dodds J
    Am J Sports Med; 2008 Nov; 36(11):2110-8. PubMed ID: 18768702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting knee replacement damage in a simulator machine using a computational model with a consistent wear factor.
    Zhao D; Sakoda H; Sawyer WG; Banks SA; Fregly BJ
    J Biomech Eng; 2008 Feb; 130(1):011004. PubMed ID: 18298180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cadaverically evaluated dynamic FEM model of closed-chain TKR mechanics.
    Lanovaz JL; Ellis RE
    J Biomech Eng; 2009 May; 131(5):051002. PubMed ID: 19388772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint.
    Peña E; Calvo B; Martínez MA; Doblaré M
    J Biomech; 2006; 39(9):1686-701. PubMed ID: 15993414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The research advances of biomechanics of human knee joint ligaments].
    Zhou J; Hao Z; Yang Y; Wang R; Jin D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):903-6. PubMed ID: 17002135
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The bionic artificial joint capsule study (1)--mechanics simulation].
    Su S; Zhang J; Tao D
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Feb; 24(1):120-3. PubMed ID: 17333904
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete element analysis in musculoskeletal biomechanics.
    Chao EY; Volokh KY; Yoshida H; Shiba N; Ide T
    Mol Cell Biomech; 2010 Sep; 7(3):175-92. PubMed ID: 21141680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fracture length scales in human cortical bone: the necessity of nonlinear fracture models.
    Yang QD; Cox BN; Nalla RK; Ritchie RO
    Biomaterials; 2006 Mar; 27(9):2095-113. PubMed ID: 16271757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of techniques for fixation of the quadriceps muscle-tendon complex for in vitro biomechanical testing of the knee joint in sheep.
    Schöttle P; Goudakos I; Rosenstiel N; Hoffmann JE; Taylor WR; Duda GN; Heller MO
    Med Eng Phys; 2009 Jan; 31(1):69-75. PubMed ID: 18539516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional surrogate contact modeling for computationally efficient dynamic simulation of total knee replacements.
    Lin YC; Haftka RT; Queipo NV; Fregly BJ
    J Biomech Eng; 2009 Apr; 131(4):041010. PubMed ID: 19275439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development and validation of a finite element model of human knee joint for dynamic analysis].
    Li H; Gu Y; Ruan S; Cui S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):97-101. PubMed ID: 22404016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.