These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 19135202)

  • 1. Surface slide track mapping of implants for total disc arthroplasty.
    Paré PE; Chan FW; Bhattacharya S; Goel VK
    J Biomech; 2009 Jan; 42(2):131-9. PubMed ID: 19135202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive modelling of cervical disc implant wear.
    de Jongh CU; Basson AH; Scheffer C
    J Biomech; 2008 Nov; 41(15):3177-83. PubMed ID: 18947829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation into PEEK-on-PEEK as a bearing surface candidate for cervical total disc replacement.
    Kraft M; Koch DK; Bushelow M
    Spine J; 2012 Jul; 12(7):603-11. PubMed ID: 22964013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical studies on cervical total disc arthroplasty: a literature review.
    Galbusera F; Bellini CM; Brayda-Bruno M; Fornari M
    Clin Biomech (Bristol, Avon); 2008 Nov; 23(9):1095-104. PubMed ID: 18635294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biotribological evaluation of artificial disc arthroplasty devices: influence of loading and kinematic patterns during in vitro wear simulation.
    Grupp TM; Yue JJ; Garcia R; Basson J; Schwiesau J; Fritz B; Blömer W
    Eur Spine J; 2009 Jan; 18(1):98-108. PubMed ID: 19050942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro wear assessment of the Charité Artificial Disc according to ASTM recommendations.
    Serhan HA; Dooris AP; Parsons ML; Ares PJ; Gabriel SM
    Spine (Phila Pa 1976); 2006 Aug; 31(17):1900-10. PubMed ID: 16924206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of computerized image guidance in lumbar disk arthroplasty.
    Smith HE; Vaccaro AR; Yuan PS; Papadopoulos S; Sasso R
    J Spinal Disord Tech; 2006 Feb; 19(1):22-7. PubMed ID: 16462214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wear of an experimental metal-on-metal artificial disc for the lumbar spine.
    Lee JL; Billi F; Sangiorgio SN; McGarry W; Krueger DJ; Miller PT; McKellop H; Ebramzadeh E
    Spine (Phila Pa 1976); 2008 Mar; 33(6):597-606. PubMed ID: 18344852
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polymer-on-metal or metal-on-polymer total disc arthroplasty: does it make a difference?
    Moghadas PM; Shepherd DE; Hukins DW; Mahomed A
    Spine (Phila Pa 1976); 2012 Oct; 37(21):1834-8. PubMed ID: 22498992
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ contact analysis of the prosthesis components of Prodisc-L in lumbar spine following total disc replacement.
    Chen WM; Park C; Lee K; Lee S
    Spine (Phila Pa 1976); 2009 Sep; 34(20):E716-23. PubMed ID: 19752690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress analysis of the interface between cervical vertebrae end plates and the Bryan, Prestige LP, and ProDisc-C cervical disc prostheses: an in vivo image-based finite element study.
    Lin CY; Kang H; Rouleau JP; Hollister SJ; Marca FL
    Spine (Phila Pa 1976); 2009 Jul; 34(15):1554-60. PubMed ID: 19564765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contact stresses in lumbar total disc arthroplasty.
    Wenzel SA; Shepherd DE
    Biomed Mater Eng; 2007; 17(3):169-73. PubMed ID: 17502693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation of forces needed to distract cervical vertebrae after discectomy: a biomechanical study.
    Aryan HE; Newman CB; Lu DC; Hu SS; Tay BK; Bradford DS; Puttlitz CM; Ames CP
    J Spinal Disord Tech; 2009 Apr; 22(2):100-4. PubMed ID: 19342931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Update on cervical artificial disk replacement.
    Anderson PA; Sasso RC; Riew KD
    Instr Course Lect; 2007; 56():237-45. PubMed ID: 17472310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Revision strategies for single- and two-level total disc arthroplasty procedures: a biomechanical perspective.
    Cunningham BW; Hu N; Beatson HJ; Serhan H; Sefter JC; McAfee PC
    Spine J; 2009 Sep; 9(9):735-43. PubMed ID: 19477694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of self-mating PEEK as an alternative bearing material for cervical disc arthroplasty: a comparison of different simulator inputs and tribological environments.
    Brown T; Bao QB
    Eur Spine J; 2012 Jun; 21 Suppl 5(Suppl 5):S717-26. PubMed ID: 22415761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new method of in vitro wear assessment of the UHMWPE tibial insert in total knee replacement.
    Affatato S; Cristofolini L; Leardini W; Erani P; Zavalloni M; Tigani D; Viceconti M
    Artif Organs; 2008 Dec; 32(12):942-8. PubMed ID: 19133022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current trends in spinal arthroplasty: an assessment of surgeon practices and attitudes regarding cervical and lumbar disk replacement.
    Whang PG; Simpson AK; Rechtine G; Grauer JN
    J Spinal Disord Tech; 2009 Feb; 22(1):26-33. PubMed ID: 19190431
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational assessment of constraint in total knee replacement.
    Moran MF; Bhimji S; Racanelli J; Piazza SJ
    J Biomech; 2008; 41(9):2013-20. PubMed ID: 18495132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical effect of constraint in lumbar total disc replacement: a study with finite element analysis.
    Chung SK; Kim YE; Wang KC
    Spine (Phila Pa 1976); 2009 May; 34(12):1281-6. PubMed ID: 19455003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.