BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19135551)

  • 21. Implementation and evaluation of a negation tagger in a pipeline-based system for information extract from pathology reports.
    Mitchell KJ; Becich MJ; Berman JJ; Chapman WW; Gilbertson J; Gupta D; Harrison J; Legowski E; Crowley RS
    Stud Health Technol Inform; 2004; 107(Pt 1):663-7. PubMed ID: 15360896
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wnt pathway curation using automated natural language processing: combining statistical methods with partial and full parse for knowledge extraction.
    Santos C; Eggle D; States DJ
    Bioinformatics; 2005 Apr; 21(8):1653-8. PubMed ID: 15564295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nomenclature-based data retrieval without prior annotation: facilitating biomedical data integration with fast doublet matching.
    Berman JJ
    In Silico Biol; 2005; 5(3):313-22. PubMed ID: 15984939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Creating knowledge repositories from biomedical reports: the MEDSYNDIKATE text mining system.
    Hahn U; Romacker M; Schulz S
    Pac Symp Biocomput; 2002; ():338-49. PubMed ID: 11928488
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collaborative text-annotation resource for disease-centered relation extraction from biomedical text.
    Cano C; Monaghan T; Blanco A; Wall DP; Peshkin L
    J Biomed Inform; 2009 Oct; 42(5):967-77. PubMed ID: 19232400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temporal reasoning with medical data--a review with emphasis on medical natural language processing.
    Zhou L; Hripcsak G
    J Biomed Inform; 2007 Apr; 40(2):183-202. PubMed ID: 17317332
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unsupervised method for extracting machine understandable medical knowledge from a large free text collection.
    Xu R; Das AK; Garber AM
    AMIA Annu Symp Proc; 2009 Nov; 2009():709-13. PubMed ID: 20351945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of OCR accuracy on automated cancer classification of pathology reports.
    Zuccon G; Nguyen AN; Bergheim A; Wickman S; Grayson N
    Stud Health Technol Inform; 2012; 178():250-6. PubMed ID: 22797049
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A text processing pipeline to extract recommendations from radiology reports.
    Yetisgen-Yildiz M; Gunn ML; Xia F; Payne TH
    J Biomed Inform; 2013 Apr; 46(2):354-62. PubMed ID: 23354284
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A field theoretical approach to medical natural language processing.
    Taira RK; Bashyam V; Kangarloo H
    IEEE Trans Inf Technol Biomed; 2007 Jul; 11(4):364-75. PubMed ID: 17674619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Obtaining Knowledge in Pathology Reports Through a Natural Language Processing Approach With Classification, Named-Entity Recognition, and Relation-Extraction Heuristics.
    Oliwa T; Maron SB; Chase LM; Lomnicki S; Catenacci DVT; Furner B; Volchenboum SL
    JCO Clin Cancer Inform; 2019 Aug; 3():1-8. PubMed ID: 31365274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. University of California, Irvine-Pathology Extraction Pipeline: the pathology extraction pipeline for information extraction from pathology reports.
    Ashish N; Dahm L; Boicey C
    Health Informatics J; 2014 Dec; 20(4):288-305. PubMed ID: 25155030
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated Classification of Selected Data Elements from Free-text Diagnostic Reports for Clinical Research.
    Löpprich M; Krauss F; Ganzinger M; Senghas K; Riezler S; Knaup P
    Methods Inf Med; 2016 Aug; 55(4):373-80. PubMed ID: 27406024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multi-class classification of cancer stages from free-text histology reports using support vector machines.
    Nguyen A; Moore D; McCowan I; Courage MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():5140-3. PubMed ID: 18003163
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lexical patterns, features and knowledge resources for coreference resolution in clinical notes.
    Gooch P; Roudsari A
    J Biomed Inform; 2012 Oct; 45(5):901-12. PubMed ID: 22449720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Building and evaluation of a structured representation of pharmacokinetics information presented in SPCs: from existing conceptual views of pharmacokinetics associated with natural language processing to object-oriented design.
    Duclos-Cartolano C; Venot A
    J Am Med Inform Assoc; 2003; 10(3):271-80. PubMed ID: 12626375
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Challenges for automatically extracting molecular interactions from full-text articles.
    McIntosh T; Curran JR
    BMC Bioinformatics; 2009 Sep; 10():311. PubMed ID: 19778419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A modular framework for biomedical concept recognition.
    Campos D; Matos S; Oliveira JL
    BMC Bioinformatics; 2013 Sep; 14():281. PubMed ID: 24063607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A qualitative model for physiology: apart from function and abnormality.
    Shinohara EY; Tatsukawa A; Kawazoe Y; Imai T; Ohe K
    Stud Health Technol Inform; 2013; 192():984. PubMed ID: 23920758
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An efficient modular framework for automatic LIONC classification of MedIMG using unified medical language.
    Bhatia S; Alojail M; Sengan S; Dadheech P
    Front Public Health; 2022; 10():926229. PubMed ID: 36033768
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.